Quantity surveying profession need to continue development to meet the changing conditions in the construction industry, and that the history of the quantity surveying and method used in quantity survey provides strong evidence to show the efficiency of information technology to change the performance of quantity surveyor. Also has become an urgent need for the use of computers and information technology, especially in such a fast-growing industry, as affecting the speed and efficiency of the services provided by the quantity surveyor. Virtual building (VB) or Building Information Modeling (BIM) is the latest technology in the built environment using modeling data. Its model multi-dimensional the role of communication with information resources over the life cycle of the project. And as a result can design a three-dimensional model (3D), and estimate the costs, programming and scheduling for any project. The Virtual building (VB) or Building Information Modeling (BIM) opens a whole new level of data exchange in the building and construction industry. This brings forth many advantages in addition to the risks.

Through this research, has been to clarify the use of this technology by using the proposed approach (application program ArchiCAD and linking it with the program Naviswork (linking with the time and cost) by a IFC format) on (a modern building of the Ministry of Construction and Housing) and to identify the important aspects in the field of quantity surveying to be the beginning to apply the virtual building technology in the construction industry in general and the profession of quantity surveyor in Iraq in particular. Were also measured accuracy of quantities for 60 paragraph calculated within the proposed approach with the account manually and the results of accuracy 99.9% . As research involved the work of a field survey for Public Sector to the extent of knowledge for virtual Building Technology, obstacles, benefits and future vision for the adoption of Building Technology virtual, and the results showed that the reality of the knowledge of virtual building technology constituted 11% with the availability of computers in the public sector and that the biggest percentage of the benefit of
the use of this technology is to reduce design errors and re-design (85%) and followed by reducing re-work by 71% and reduce the west of time, reduce change orders in addition to getting all 2D diagrams with 3D vision and reduce mistakes calculation of quantities and costs by 57%. The results also show obstacles to use this technology for the people who have knowledge of this technology and that the biggest percentage of the cost of new programs and updated by 86% and comes after a lack of training by 71%. The results also showed obstacles to use this technology for people who have no knowledge of this technology and that the biggest percentage of the lack of training by 46%, then the lack of understanding and knowledge of the benefits of these programs by 44%. The results showed also things that increase use virtual Building Technology for people with knowledge of this technology where that the most important things is the presence of skilled staff by 86% then requested the owner by 71% then the low cost for programs and training by 57%. The results showed also things that increase use virtual Building Technology for people who have no knowledge of this technology as the most important things is the presence of skilled staff by 88% then requested the owner of 12%. And the results showed also the possibility that this technology replaced traditional methods in the construction industry increased by 86% for people with knowledge and by 71% for people who do not have to know which shows optimism for the adoption of a relatively good Building Technology virtual in the future.