Introduction to Welded Joints

Introduction
A welded joint is a permanent joint which is obtained by the fusion of the edges of the two parts to be joined together, with or without the application of pressure and a filler material. The heat required for the fusion of the material may be obtained by burning of gas (in case of gas welding) or by an electric arc (in case of electric arc welding). The latter method is extensively used because of greater speed of welding. Welding is extensively used in fabrication as an alternative method for casting or forging and as a replacement for bolted and riveted joints. It is also used as a repair medium *e.g.* to reunite metal at a crack, to build up a small part that has broken off such as gear tooth or to repair a worn surface such as a bearing surface.

Advantages and Disadvantages of Welded Joints over Riveted Joints
Following are the advantages and disadvantages of welded joints over riveted joints.

Advantages

1. The welded structures are usually lighter than riveted structures. This is due to the reason, that in welding, gussets or other connecting components are not used.
2. The welded joints provide maximum efficiency (may be 100%) which is not possible in case of riveted joints.
3. Alterations and additions can be easily made in the existing structures.
4. As the welded structure is smooth in appearance, therefore it looks pleasing.
5. In welded connections, the tension members are not weakened as in the case of riveted joints.
6. A welded joint has a great strength. Often a welded joint has the strength of the parent metal itself.
7. Sometimes, the members are of such a shape (*i.e.* circular steel pipes) that they afford difficulty for riveting. But they can be easily welded.
8. The welding provides very rigid joints. This is in line with the modern trend of providing rigid frames.
9. It is possible to weld any part of a structure at any point. But riveting requires enough clearance.
10. The process of welding takes less time than the riveting.

Disadvantages
1. Since there is an uneven heating and cooling during fabrication, therefore the members may get distorted or additional stresses may develop.
2. It requires a highly skilled labour and supervision.
3. Since no provision is kept for expansion and contraction in the frame, therefore there is a possibility of cracks developing in it.
4. The inspection of welding work is more difficult than riveting work.

Types of Welded Joints

Following two types of welded joints are important from the subject point of view:
1. Lap joint or fillet joint, and 2. Butt joint.

![Fig.1. Types of Lab and Butt Joints](image)

Lap Joint

The lap joint or the fillet joint is obtained by overlapping the plates and then welding the edges of the plates. The cross-section of the fillet is approximately triangular. The fillet joints may be

The fillet joints are shown in Fig.1. A single transverse fillet joint has the disadvantage that the edge of the plate which is not welded can buckle or warp out of shape.

Butt Joint

The butt joint is obtained by placing the plates edge to edge as shown in Fig.2. In butt welds, the plate edges do not require beveling if the thickness of plate is less than 5 mm. On the other hand, if the plate thickness is 5 mm to 12.5 mm, the edges should be beveled to V or U-groove on both sides.
The butt joints may be

These joints are shown in Fig. 2.

The other type of welded joints are corner joint, edge joint and T-joint as shown in Fig. 3.

Basic Weld Symbols

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Form of weld</th>
<th>Sectional representation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fillet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Square butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Single-V butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Double-V butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Single-U butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Double-U butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Single bevel butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Double bevel butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. No.</td>
<td>Form of weld</td>
<td>Sectional representation</td>
<td>Symbol</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------</td>
<td>--------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>9.</td>
<td>Single-J butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Double-J butt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Bead (edge or seal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Stud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Sealing run</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Spot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Seam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Mashed seam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Plug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Backing strip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Stitch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Projection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Flash</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rod or bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Butt resistance or pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(upset)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Weld Symbols

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Particulars</th>
<th>Drawing representation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Weld all round</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Field weld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Flash contour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Convex contour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Concave contour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Grinding finish</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Machining finish</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Chipping finish</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

References:
Elements of a welding symbol

Elements of a Welding Symbol

A welding symbol consists of the following eight elements:

1. Reference line, 2. Arrow,
3. Basic weld symbols, 4. Dimensions and other data,
5. Supplementary symbols, 6. Finish symbols,
7. Tail, and 8. Specification, process or other references.

Standard Location of Elements of a Welding Symbol

The arrow points to the location of weld, the basic symbols with dimensions are located on one or both sides of reference line. The specification if any is placed in the tail of arrow. Fig. 1. shows the standard locations of welding symbols represented on drawing.

![Standard location of weld symbols.](image)

Some of the examples of welding symbols represented on drawing are shown in the following table.
Representation of welding symbols.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>Representation on drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fillet-weld each side of Tcc- convex contour</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Single V butt weld machining finish</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Double V butt weld</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Plug weld - 30° Groove-angle-flush contour</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Staggered intermittent fillet welds</td>
<td></td>
</tr>
</tbody>
</table>

References:
Contents: Design of Welded Joints

Strength of Transverse Fillet Welded Joints

We have already discussed that the fillet or lap joint is obtained by overlapping the plates and then welding the edges of the plates. The transverse fillet welds are designed for tensile strength. Let us consider a single and double transverse fillet welds as shown in Fig. 1(a) and (b) respectively.

![Fig. 1 Transverse fillet welds.](image)

The length of each side is known as *leg* or *size of the weld* and the perpendicular distance of the hypotenuse from the intersection of legs (*i.e. BD*) is known as *throat thickness*. The minimum area of the weld is obtained at the throat *BD*, which is given by the product of the throat thickness and length of weld.

Let

- \(t = \text{Throat thickness (BD)}, \)
- \(s = \text{Leg or size of weld}, \)
- \(d = \text{Thickness of plate, and} \)
- \(l = \text{Length of weld}, \)

From Fig. 2, we find that the throat thickness,

\[t = s \times \sin 45^\circ = 0.707 \, s \]

Therefore, Minimum area of the weld or throat area,

\[A = \text{Throat thickness} \times \text{Length of weld} = t \times l = 0.707 \, s \times l \]

If \(\sigma_t \) is the allowable tensile stress for the weld metal, then the tensile strength of the joint for single fillet weld,

\[P = \text{Throat area} \times \text{Allowable tensile stress} = 0.707 \, s \times l \times \sigma_t \]

And tensile strength of the joint for double fillet weld,

\[P = 2 \times 0.707 \, s \times l \times \sigma_t = 1.414 \, s \times l \times \sigma_t \]
Note: Since the weld is weaker than the plate due to slag and blow holes, therefore the weld is given a reinforcement which may be taken as 10% of the plate thickness.

Strength of Parallel Fillet Welded Joints

The parallel fillet welded joints are designed for shear strength. Consider a double parallel fillet welded joint as shown in Fig.3 (a). We have already discussed in the previous article, that the minimum area of weld or the throat area,

\[A = 0.707 s \times l \]

If \(\tau \) is the allowable shear stress for the weld metal, then the shear strength of the joint for single parallel fillet weld,

\[P = \text{Throat area} \times \text{Allowable shear stress} = 0.707 s \times l \times \tau \]

And shear strength of the joint for double parallel fillet weld,

\[P = 2 \times 0.707 \times s \times l \times \tau = 1.414 s \times l \times \tau \]

![Fig.3](image)

Notes: 1. If there is a combination of single transverse and double parallel fillet welds as shown in Fig. (b), then the strength of the joint is given by the sum of strengths of single transverse and double parallel fillet welds. Mathematically,

\[P = 0.707 s \times l_1 \times \sigma_t + 1.414 s \times l_2 \times \tau \]

Where \(l_t \) is normally the width of the plate.

2. In order to allow for starting and stopping of the bead, 12.5 mm should be added to the length of each weld obtained by the above expression.

3. For reinforced fillet welds, the throat dimension may be taken as 0.85 \(t \).

Problem:

A plate 100 mm wide and 10 mm thick is to be welded to another plate by means of double parallel fillets. The plates are subjected to a static load of 80 kN. Find the length of weld if the permissible shear stress in the weld does not exceed 55 MPa.
Solution. Given: Width = 100 mm;
Thickness = 10 mm; \(P = 80 \ \text{kN} = 80 \times 10^3 \ \text{N} \);
\(\tau = 55 \ \text{MPa} = 55 \ \text{N/mm}^2 \)

Let \(l = \text{Length of weld, and } s = \text{Size of weld} = \text{Plate thickness} = 10 \ \text{mm} \)

\((\text{Given}) \)

We know that maximum load which the plates can carry for double parallel fillet weld (\(P \)),

\[
80 \times 10^3 = 1.414 \times s \times l \times \tau = 1.414 \times 10 \times l \times 55 = 778 \ l
\]

\[
\therefore \ l = \frac{80 \times 10^3}{778} = 103 \ \text{mm}
\]

Adding 12.5 mm for starting and stopping of weld run, we have

\[
l = 103 + 12.5 = 115.5 \ \text{mm} \ \text{Ans.}
\]

Strength of Butt Joints

The butt joints are designed for tension or compression. Consider a single V-butt joint as shown in Fig. 4(a).

![Fig.4. Butt Joints](image)

(a) Single V-butt joint.
(b) Double V-butt joint.

In case of butt joint, the length of leg or size of weld is equal to the throat thickness which is equal to thickness of plates. Therefore, Tensile strength of the butt joint (single-V or square butt joint),

\[
P = t \times l \times \sigma_t
\]

Where \(l = \text{Length of weld} \). It is generally equal to the width of plate. And tensile strength for double-V butt joint as shown in Fig. 4(b) is given by

\[
P = (t_1 + t_2) \ l \times \sigma_t
\]

Where \(t_1 = \text{Throat thickness at the top, and} \)

\(t_2 = \text{Throat thickness at the bottom.} \)
It may be noted that size of the weld should be greater than the thickness of the plate, but it may be less. The following table shows recommended minimum size of the welds.

Stresses for Welded Joints

The stresses in welded joints are difficult to determine because of the variable and unpredictable parameters like homogeneity of the weld metal, thermal stresses in the welds, changes of physical properties due to high rate of cooling etc. The stresses are obtained, on the following assumptions:
1. The load is distributed uniformly along the entire length of the weld, and
2. The stress is spread uniformly over its effective section.

The following table shows the stresses for welded joints for joining ferrous metals with mild steel electrode under steady and fatigue or reversed load.

Stress Concentration Factor for Welded Joints

The reinforcement provided to the weld produces stress concentration at the junction of the weld and the parent metal. When the parts are subjected to fatigue loading, the stress concentration factors should be taken into account.

References:
Problem:

A plate 100 mm wide and 12.5 mm thick is to be welded to another plate by means of parallel fillet welds. The plates are subjected to a load of 50 kN. Find the length of the weld so that the maximum stress does not exceed 56 MPa. Consider the joint first under static loading and then under fatigue loading.

Solution. Given: \(\text{Width} = 100 \text{ mm} \); \(\text{Thickness} = 12.5 \text{ mm} \); \(P = 50 \text{ kN} = 50 \times 10^3 \text{N} \); \(\tau = 56 \text{ MPa} = 56 \text{ N/mm}^2 \)

Length of weld for static loading

Let \(l = \text{Length of weld, and} \)

\(s = \text{Size of weld} = \text{Plate thickness} \)

\(= 12.5 \text{ mm} \) \(\text{(Given)} \)

We know that the maximum load which the plates can carry for double parallel fillet welds \(P \),

\[50 \times 10^3 = 1.414 s \times l \times \tau \]

\[= 1.414 \times 12.5 \times l \times 56 = 990 l \]

\[\therefore \quad l = \frac{50 \times 10^3}{990} = 50.5 \text{ mm} \]

Adding 12.5 mm for starting and stopping of weld run, we have

\(l = 50.5 + 12.5 = 63 \text{ mm} \) Ans.

Length of weld for fatigue loading

From Table 10.6, we find that the stress concentration factor for parallel fillet welding is 2.7.

\[\therefore \text{Permissible shear stress,} \]

\[\tau = \frac{56}{2.7} = 20.74 \text{ N/mm}^2 \]

We know that the maximum load which the plates can carry for double parallel fillet welds \(P \),

\[50 \times 10^3 = 1.414 s \times l \times \tau = 1.414 \times 12.5 \times l \times 20.74 = 367 l \]

\[\therefore \quad l = \frac{50 \times 10^3}{367} = 136.2 \text{ mm} \]

Adding 12.5 for starting and stopping of weld run, we have

\(l = 136.2 + 12.5 = 148.7 \text{ mm} \) Ans.

Problem:

A plate 75 mm wide and 12.5 mm thick is joined with another plate by a single transverse weld and a double parallel fillet weld as shown in Fig. The maximum tensile and shear stresses are 70 MPa and 56 MPa respectively.

Find the length of each parallel fillet weld, if the joint is subjected to both static and fatigue loading.
Solution. Given: Width = 75 mm; Thickness = 12.5 mm;
\(\sigma_t = 70 \text{ MPa} = 70 \text{ N/mm}^2; \tau = 56 \text{ MPa} = 56 \text{ N/mm}^2 \)

The effective length of weld \((l_1) \) for the transverse weld may be obtained by subtracting 12.5 mm from the width of the plate.

\[l_1 = 75 - 12.5 = 62.5 \text{ mm} \]

Length of each parallel fillet for static loading

Let

\[l_2 = \text{Length of each parallel fillet} \]

We know that the maximum load which the plate can carry is

\[P = \text{Area} \times \text{Stress} = 75 \times 12.5 \times 70 = 65625 \text{ N} \]

Load carried by single transverse weld,

\[P_1 = 0.707 s \times l_1 \times \sigma_t = 0.707 \times 12.5 \times 62.5 \times 70 = 38664 \text{ N} \]

and the load carried by double parallel fillet weld,

\[P_2 = 1.414 s \times l_2 \times \tau = 1.414 \times 12.5 \times l_2 \times 56 = 990 l_2 \text{ N} \]

\[\therefore \text{Load carried by the joint} \ (P), \]

\[65625 = P_1 + P_2 = 38664 + 990 l_2 \quad \text{or} \quad l_2 = 27.2 \text{ mm} \]

Adding 12.5 mm for starting and stopping of weld run, we have

\[l_2 = 27.2 + 12.5 = 39.7 \text{ say 40 mm} \quad \text{Ans.} \]

Length of each parallel fillet for fatigue loading

From Table 10.6, we find that the stress concentration factor for transverse welds is 1.5 and for parallel fillet welds is 2.7.

\[\therefore \text{Permissible tensile stress, } \]

\[\sigma_t = 70 / 1.5 = 46.7 \text{ N/mm}^2 \]

and permissible shear stress,

\[\tau = 56 / 2.7 = 20.74 \text{ N/mm}^2 \]

Load carried by single transverse weld,

\[P_1 = 0.707 s \times l_1 \times \sigma_t = 0.707 \times 12.5 \times 62.5 \times 46.7 = 25795 \text{ N} \]

and load carried by double parallel fillet weld,

\[P_2 = 1.414 s \times l_2 \times \tau = 1.414 \times 12.5 \times l_2 \times 20.74 = 366 l_2 \text{ N} \]

\[\therefore \text{Load carried by the joint} \ (P), \]

\[65625 = P_1 + P_2 = 25795 + 366 l_2 \quad \text{or} \quad l_2 = 108.8 \text{ mm} \]

Adding 12.5 mm for starting and stopping of weld run, we have

\[l_2 = 108.8 + 12.5 = 121.3 \text{ mm} \quad \text{Ans.} \]

References:

Contents: Special fillet welded joints

Special Cases of Fillet Welded Joints

The following cases of fillet welded joints are important from the subject point of view.

1. **Circular fillet weld subjected to torsion.** Consider a circular rod connected to a rigid plate by a fillet weld as shown in Fig. 1.

Let \(d = \) Diameter of rod,
\(r = \) Radius of rod,
\(T = \) Torque acting on the rod,
\(s = \) Size (or leg) of weld,
\(t = \) Throat thickness,

\(J = \) Polar moment of inertia of the weld section

\[
J = \frac{\pi t d^3}{4}
\]

We know that shear stress for the material,

\[
\tau = \frac{T r}{J} = \frac{T \times d / 2}{J} = \frac{T \times d / 2}{\pi t d^3 / 4} = \frac{2T}{\pi t d^2}
\]

This shear stress occurs in a horizontal plane along a leg of the fillet weld. The maximum shear occurs on the throat of weld which is inclined at 45° to the horizontal plane.

Length of throat, \(t = s \sin 45^\circ = 0.707 s \) and maximum shear stress,

\[
\tau_{\text{max}} = \frac{2T}{\pi \times 0.707 s \times d^2} = \frac{2.83 T}{\pi s d^2}
\]

2. **Circular fillet weld subjected to bending moment.**

Consider a circular rod connected to a rigid plate by a fillet weld as shown in Fig. 2.

Let \(d = \) Diameter of rod,

\(M = \) Bending moment acting on the rod,
\(s = \) Size (or leg) of weld,
\(t = \) Throat thickness,
Z = Section modulus of the weld section

\[Z = \frac{\pi t d^2}{4} \]

We know that the bending stress

\[c_b = \frac{M}{Z} = \frac{M}{\pi t d^2/4} = \frac{4M}{\pi t d^2} \]

This bending stress occurs in a horizontal plane along a leg of the fillet weld. The maximum bending stress occurs on the throat of the weld which is inclined at 45° to the horizontal plane.

Length of throat, \(t = s \sin 45° = 0.707 \ s \) and maximum bending stress,

\[c_{b(max)} = \frac{4M}{\pi \times 0.707 s \times d^2} = \frac{5.66 M}{\pi s d^2} \]

3. **Long fillet weld subjected to torsion.** Consider a vertical plate attached to a horizontal plate by two identical fillet welds as shown in Fig.3.

Let \(T = \) Torque acting on the vertical plate,

- \(l = \) Length of weld,
- \(s = \) Size (or leg) of weld,
- \(t = \) Throat thickness, and
- \(J = \) Polar moment of inertia of the weld section

\[J = 2 \times \frac{t \times l^3}{12} = \frac{t \times l^3}{6} \ldots \]

It may be noted that the effect of the applied torque is to rotate the vertical plate about the \(Z \)-axis through its mid point. This rotation is resisted by shearing stresses developed between two fillet welds and the horizontal plate. It is assumed that these horizontal shearing stresses vary from zero at the \(Z \)-axis and maximum at the ends of the plate. This variation of shearing stress is analogous to the variation of normal stress over the depth (\(l \)) of a beam subjected to pure bending.

Therefore, Shear stress,

\[u = \frac{T \times l/2}{t \times l^3/6} = \frac{3 T}{t \times l^2} \]
The maximum shear stress occurs at the throat and is given by

\[
\tau_{\text{max}} = \frac{3T}{0.707s \times l^2} = \frac{4.242T}{s \times l^2}
\]

References:
Contents: Unsymmetrical welded joints

Axially Loaded Unsymmetrical Welded Sections

Sometimes unsymmetrical sections such as angles, channels, T-sections etc., welded on the flange edges are loaded axially as shown in Fig. In such cases, the lengths of weld should be proportioned in such a way that the sum of resisting moments of the welds about the gravity axis is zero. Consider an angle section as shown in Fig.

Let \(l_a = \) Length of weld at the top,
\(l_b = \) Length of weld at the bottom,
\(l = \) Total length of weld = \(l_a + l_b \)
\(P = \) Axial load,
\(a = \) Distance of top weld from gravity axis,
\(b = \) Distance of bottom weld from gravity axis, and
\(f = \) Resistance offered by the weld per unit length.

![Diagram](image)

Fig. Axially loaded unsymmetrical welded section

Moment of the top weld about gravity axis
\[
= l_a \times f \times a
\]
And moment of the bottom weld about gravity axis
\[
= l_b \times f \times b
\]
Since the sum of the moments of the weld about the gravity axis must be zero, therefore,
\[
l_a \times f \times a - l_b \times f \times b = 0
\]
or
\[
l_a \times a = l_b \times b \quad \text{...(i)}
\]
We know that
\[
l = l_a + l_b \quad \text{...(ii)}
\]
From equations (i) and (ii), we have
\[
l_a = \frac{l \times b}{a + b} \quad \text{and} \quad l_b = \frac{l \times a}{a + b}
\]
References:
Eccentrically Loaded Welded Joints

An eccentric load may be imposed on welded joints in many ways. The stresses induced on the joint may be of different nature or of the same nature. The induced stresses are combined depending upon the nature of stresses. When the shear and bending stresses are simultaneously present in a joint (see case 1), then maximum stresses are as follows:

Maximum normal stress,

\[\sigma_{t(max)} = \frac{\sigma_b}{2} + \frac{1}{2} \sqrt{(\sigma_b)^2 + 4 \tau^2} \]

And Maximum shear stress,

\[\tau_{max} = \frac{1}{2} \sqrt{(\sigma_b)^2 + 4 \tau^2} \]

Where \(\sigma_b \) = Bending stress, and
\(\tau \) = Shear stress.

When the stresses are of the same nature, these may be combined vectorially (see case 2).

We shall now discuss the two cases of eccentric loading as follows:

Case 1

Consider a T-joint fixed at one end and subjected to an eccentric load \(P \) at a distance \(e \) as shown in Fig. 1.

Let \(s \) = Size of weld,

\(l \) = Length of weld, and

\(t \) = Throat thickness.

The joint will be subjected to the following two types of stresses:

1. Direct shear stress due to the shear force \(P \) acting at the welds, and
2. Bending stress due to the bending moment \(P \times e \).

We know that area at the throat,

\[A = \text{Throat thickness} \times \text{Length of weld} \]

\[= t \times l \times 2 = 2 t \times l \ldots \text{(For double fillet weld)} \]

\[= 2 \times 0.707 s \times l = 1.414 s \times l \ldots \text{(since, } t = s \cos 45^\circ = 0.707 s) \]

Shear stress in the weld (assuming uniformly distributed),

\[\tau = \frac{P}{A} = \frac{P}{1.414 s \times l} \]
Section modulus of the weld metal through the throat,

\[Z = \frac{t \times l^2}{6} \times 2 \quad \text{...(for both sides weld)} \]

\[= \frac{0.707 s \times l^2}{6} = \frac{s \times l^2}{4.242} \]

Bending moment, \(M = P \times e \)

\[\therefore \text{Bending stress,} \quad \sigma_b = \frac{M}{Z} = \frac{P \times e \times 4.242}{s \times l^2} = \frac{4.242 P \times e}{s \times l^2} \]

We know that the maximum normal stress,

\[\sigma_{(\text{max})} = \frac{1}{2} \sigma_b + \frac{1}{2} \sqrt{\left(\sigma_b\right)^2 + 4 \tau^2} \]

And maximum shear stress,

\[\tau_{\text{max}} = \frac{1}{2} \sqrt{\left(\sigma_b\right)^2 + 4 \tau^2} \]

Case 2

When a welded joint is loaded eccentrically as shown in Fig.2, the following two types of the stresses are induced:

1. Direct or primary shear stress, and
2. Shear stress due to turning moment.

![Fig.2 eccentrically loaded welded joint.](image-url)
Let $P =$ Eccentric load,
$e =$ Eccentricity i.e. perpendicular distance between the line of action of load and centre of gravity (G) of the throat section or fillets,
$l =$ Length of single weld,
$s =$ Size or leg of weld, and
$t =$ Throat thickness.

Let two loads P_1 and P_2 (each equal to P) are introduced at the centre of gravity ‘G’ of the weld system. The effect of load $P_1 = P$ is to produce direct shear stress which is assumed to be uniform over the entire weld length. The effect of load $P_2 = P$ is to produce a turning moment of magnitude $P \times e$ which tends of rotate the joint about the centre of gravity ‘G’ of the weld system. Due to the turning moment, secondary shear stress is induced.

We know that the direct or primary shear stress,

$$\tau_1 = \frac{P}{2 \times 0.707 \times s \times l} = \frac{P}{1.414 \times s \times l}$$

Since the shear stress produced due to the turning moment ($T = P \times e$) at any section is proportional to its radial distance from G, therefore stress due to $P \times e$ at the point A is proportional to AG (r_2) and is in a direction at right angles to AG. In other words,

$$\frac{\tau_2}{r_2} = \frac{\tau}{r} = \text{Constant}$$

$$\tau = \frac{\tau_2}{r_2} \times r \quad \ldots (i)$$

Where τ_2 is the shear stress at the maximum distance (r_2) and τ is the shear stress at any distance r. Consider a small section of the weld having area dA at a distance r from G.

Shear force on this small section

$$= \tau \times dA$$

And turning moment of this shear force about G,

$$dT = \tau \times dA \times r = \frac{\tau_1}{r_2} \times dA \times r^2 \quad \ldots \text{[From equation (i)]}$$

Total turning moment over the whole weld area,
Design of Machine Members - I Unit-3

Lecture Notes – 35

Where \(J \) = Polar moment of inertia of the throat area about \(G \).

Shear stress due to the turning moment i.e. secondary shear stress,

\[
\tau_2 = \frac{T \times r_2}{J} = \frac{P \times e \times r_2}{J}
\]

In order to find the resultant stress, the primary and secondary shear stresses are combined vectorially.

Resultant shear stress at \(A \),

\[
\tau_A = \sqrt{(\tau_1)^2 + (\tau_2)^2 + 2\tau_1 \times \tau_2 \times \cos \theta}
\]

\(\theta = \) Angle between \(\tau_1 \) and \(\tau_2 \), and

\(\cos \theta = \frac{r_1}{r_2} \)

References:
3. Design Data hand Book - S MD Jalaludin
Problem:
A welded joint as shown in Fig. 10.24, is subjected to an eccentric load of 2 kN. Find the size of weld, if the maximum shear stress in the weld is 25 MPa.

Solution. Given: \(P = 2 \text{kN} = 2000 \text{ N}; \ e = 120 \text{ mm}; \ l = 40 \text{ mm}; \ \tau_{\text{max}} = 25 \text{ MPa} = 25 \text{ N/mm}^2 \)

Let \(s = \) Size of weld in mm, and \(t = \) Throat thickness.

The joint, as shown in Fig. 10.24, will be subjected to direct shear stress due to the shear force, \(P = 2000 \text{ N} \) and bending stress due to the bending moment of \(P \times e \).

We know that area at the throat,
\[
A = 2t \times l = 2 \times 0.707 s \times l = 1.414 s \times l = 1.414 s \times 40 = 56.56 s \text{ mm}^2
\]

Shear stress,
\[
\tau = \frac{P}{A} = \frac{2000}{56.56 s} = \frac{35.4}{s} \text{ N/mm}^2
\]

Bending moment,
\[
M = P \times e = 2000 \times 120 = 240 \times 10^3 \text{ N-mm}
\]

Section modulus of the weld through the throat,
\[
Z = \frac{s \times l^2}{4.242} = \frac{s (40)^2}{4.242} = 377 s \text{ mm}^3
\]

Bending stress,
\[
\sigma_b = \frac{M}{Z} = \frac{240 \times 10^3}{377 s} = \frac{636.6}{s} \text{ N/mm}^2
\]

We know that maximum shear stress (\(\tau_{\text{max}} \)),
\[
25 = \frac{1}{2} \sqrt{\left(\frac{\sigma_b}{s} \right) + 4 \left(\frac{\tau}{s} \right)^2} = \frac{1}{2} \sqrt{\left(\frac{636.6}{s} \right)^2 + 4 \left(\frac{35.4}{s} \right)^2} = \frac{320.3}{s}
\]

\[
\therefore \ s = \frac{320.3}{25} = 12.8 \text{ mm Ans.}
\]

Problem:
A bracket carrying a load of 15 kN is to be welded as shown in Fig. Find the size of weld required if the allowable shear stress is not to exceed 80 MPa.

Solution. Given: \(P = 15 \text{ kN} = 15 \times 10^3 \text{ N}; \ \tau = 80 \text{ MPa} = 80 \text{ N/mm}^2; \ b = 80 \text{ mm}; \ l = 50 \text{ mm}; \ e = 125 \text{ mm}\)

Let \(s = \) Size of weld in mm, and \(t = \) Throat thickness.

We know that the throat area,
\[
A = 2t \times l = 2 \times 0.707 s \times l = 1.414 s \times l = 1.414 s \times 50 = 70.7 s \text{ mm}^2
\]
\[
\tau_1 = \frac{P}{A} = \frac{15 \times 10^3}{70.7 \ s} = \frac{212}{s} \text{ N/mm}^2
\]

\[
J = \frac{t \left(3b^2 + l^2\right)}{6} = \frac{0.707 \times 50 \times [3(80)^2 + (50)^2]}{6} \text{ mm}^4
\]

= 127,850 \text{ mm}^4

\[
\tau_2 = \frac{P \times e \times r_2}{J} = \frac{15 \times 10^3 \times 125 \times 47}{127,850 \ s} = \frac{689.3}{s} \text{ N/mm}^2
\]

\[
\cos \theta = \frac{r_1}{r_2} = \frac{25}{47} = 0.532
\]

We know that resultant shear stress,

\[
\tau = \sqrt{\left(\tau_1\right)^2 + \left(\tau_2\right)^2 + 2 \tau_1 \times \tau_2 \cos \theta}
\]

\[
80 = \sqrt{\left(\frac{212}{s}\right)^2 + \left(\frac{689.3}{s}\right)^2 + 2 \times \frac{212}{s} \times \frac{689.3}{s} \times 0.532} = \frac{822}{s}
\]

\[
\therefore \quad s = \frac{822}{80} = 10.3 \text{ mm Ans.}
\]

References:

1. Machine Design - V. Bandari