Introduction to Screwed Joints:

A screw thread is formed by cutting a continuous helical groove on a cylindrical surface. A screw made by cutting a single helical groove on the cylinder is known as **single threaded** (or single-start) screw and if a second thread is cut in the space between the grooves of the first, a **double threaded** (or double-start) screw is formed. Similarly, triple and quadruple (i.e. multiple-start) threads may be formed. The helical grooves may be cut either **right hand** or **left hand**.

A screwed joint is mainly composed of two elements i.e. a bolt and nut. The screwed joints are widely used where the machine parts are required to be readily connected or disconnected without damage to the machine or the fastening. This may be for the purpose of holding or adjustment in assembly or service inspection, repair, or replacement or it may be for the manufacturing or assembly reasons. The parts may be rigidly connected or provisions may be made for predetermined relative motion.

Advantages and Disadvantages of Screwed Joints

Following are the advantages and disadvantages of the screwed joints.

Advantages

1. Screwed joints are highly reliable in operation.
2. Screwed joints are convenient to assemble and disassemble.
3. A wide range of screwed joints may be adapted to various operating conditions.
4. Screws are relatively cheap to produce due to standardization and highly efficient manufacturing processes.

Disadvantages

The main disadvantage of the screwed joints is the stress concentration in the threaded portions which are vulnerable points under variable load conditions.

Note: The strength of the screwed joints is not comparable with that of riveted or welded joints.

Important Terms Used in Screw Threads

The following terms used in screw threads, as shown in Fig. 1, are important from the subject point of view:
1. **Major diameter.** It is the largest diameter of an external or internal screw thread. The screw is specified by this diameter. It is also known as **outside or nominal diameter**.

2. **Minor diameter.** It is the smallest diameter of an external or internal screw thread. It is also known as **core or root diameter**.

3. **Pitch diameter.** It is the diameter of an imaginary cylinder, on a cylindrical screw thread, the surface of which would pass through the thread at such points as to make equal the width of the thread and the width of the spaces between the threads. It is also called an **effective diameter**. In a nut and bolt assembly, it is the diameter at which the ridges on the bolt are in complete touch with the ridges of the corresponding nut.

4. **Pitch.** It is the distance from a point on one thread to the corresponding point on the next. This is measured in an axial direction between corresponding points in the same axial plane. Mathematically,

\[
\text{Pitch} = \frac{1}{\text{No. of threads per unit length of screw}}
\]

5. **Lead.** It is the distance between two corresponding points on the same helix. It may also be defined as the distance which a screw thread advances axially in one rotation of the nut. Lead is equal to the pitch in case of single start threads, it is twice the pitch in double start, thrice the pitch in triple start and so on.

6. **Crest.** It is the top surface of the thread.

7. **Root.** It is the bottom surface created by the two adjacent flanks of the thread.

8. **Depth of thread.** It is the perpendicular distance between the crest and root.

9. **Flank.** It is the surface joining the crest and root.
10. **Angle of thread.** It is the angle included by the flanks of the thread.

11. **Slope.** It is half the pitch of the thread.

References:

Stresses in Screwed Fastening due to Static Loading

The following stresses in screwed fastening due to static loading are important from the subject point of view:

1. Internal stresses due to screwing up forces,
2. Stresses due to external forces, and
3. Stress due to combination of stresses at (1) and (2).

Initial Stresses due to Screwing up Forces

The following stresses are induced in a bolt, screw or stud when it is screwed up tightly.

1. **Tensile stress due to stretching of bolt.** Since none of the above mentioned stresses are accurately determined, therefore bolts are designed on the basis of direct tensile stress with a large factor of safety in order to account for the indeterminate stresses. The initial tension in a bolt, based on experiments, may be found by the relation

\[P_i = 2840 \, d \, N \]

Where \(P_i \) = Initial tension in a bolt, and
\(d \) = Nominal diameter of bolt, in mm.

The above relation is used for making a joint fluid tight like steam engine cylinder cover joints etc. When the joint is not required as tight as fluid-tight joint, then the initial tension in a bolt may be reduced to half of the above value. In such cases

\[P_i = 1420 \, d \, N \]

The small diameter bolts may fail during tightening, therefore bolts of smaller diameter (less than M 16 or M 18) are not permitted in making fluid tight joints. If the bolt is not initially stressed, then the maximum safe axial load which may be applied to it, is given by

\[P = \text{Permissible stress} \times \text{Cross-sectional area at bottom of the thread} \]

\[\text{Stress area} = \frac{n}{4} \left(\frac{d_p + d_c}{2} \right)^2 \]

Where \(d_p \) = Pitch diameter, and
\(d_c \) = Core or minor diameter.

Stresses due to External Forces

The following stresses are induced in a bolt when it is subjected to an external load.

1. **Tensile stress.** The bolts, studs and screws usually carry a load in the direction of the bolt axis which induces a tensile stress in the bolt.

Let \(d_c \) = Root or core diameter of the thread, and
\(\sigma_t \) = Permissible tensile stress for the bolt material.

We know that external load applied,

\[
P = \frac{\pi}{4} (d_c)^2 \sigma_t
\]

\[
d_c = \sqrt[4]{\frac{4P}{\pi \sigma_t}}
\]

Notes:

(a) If the external load is taken up by a number of bolts, then

\[
P = \frac{\pi}{4} (d_c)^2 \sigma_t \times n
\]

(b) In case the standard table is not available, then for coarse threads, \(d_c = 0.84 \) d, where d is the nominal diameter of bolt.

2. Shear stress. Sometimes, the bolts are used to prevent the relative movement of two or more parts, as in case of flange coupling, and then the shear stress is induced in the bolts. The shear stresses should be avoided as far as possible. It should be noted that when the bolts are subjected to direct shearing loads, they should be located in such a way that the shearing load comes upon the body (i.e. shank) of the bolt and not upon the threaded portion. In some cases, the bolts may be relieved of shear load by using shear pins. When a number of bolts are used to share the shearing load, the finished bolts should be fitted to the reamed holes.

Let \(d = \) Major diameter of the bolt, and

\(n = \) Number of bolts.

Shearing load carried by the bolts,

\[
P_s = \frac{\pi}{4} d^2 \times \tau \times n \quad \text{or} \quad d = \sqrt[4]{\frac{4P_s}{\pi \tau n}}
\]

3. Combined tension and shear stress. When the bolt is subjected to both tension and shear loads, as in case of coupling bolts or bearing, then the diameter of the shank of the bolt is obtained from the shear load and that of threaded part from the tensile load. A diameter slightly larger than that required for either shear or tension may be assumed and stresses due to combined load should be checked for the following principal stresses.

Maximum principal shear stress,

\[
\tau_{\text{max}} = \frac{1}{2} \sqrt{(\sigma_t)^2 + 4\tau^2}
\]

And maximum principal tensile stress,

\[
\sigma_{t(\text{max})} = \frac{\sigma_t}{2} + \frac{1}{2} \sqrt{(\sigma_t)^2 + 4\tau^2}
\]
These stresses should not exceed the safe permissible values of stresses.

References:
Contents: Stresses due to combined loading and design of cylindrical cover plates.

Stress due to Combined Forces

The resultant axial load on a bolt depends upon the following factors:

1. The initial tension due to tightening of the bolt,
2. The external load, and
3. The relative elastic yielding (springiness) of the bolt and the connected members.

When the connected members are very yielding as compared with the bolt, which is a soft gasket, as shown in Fig. 1(a), then the resultant load on the bolt is approximately equal to the sum of the initial tension and the external load. On the other hand, if the bolt is very yielding as compared with the connected members, as shown in Fig. 1(b), then the resultant load will be either the initial tension or the external load, whichever is greater. The actual conditions usually lie between the two extremes. In order to determine the resultant axial load \(P\) on the bolt, the following equation may be used:

\[
P = P_1 + \frac{a}{1 + a} \times P_2 = P_1 + K \times P_2
\]

(Substituting \(\frac{a}{1 + a} = K\))

![Fig.1](image)

Where \(P_1\) = Initial tension due to tightening of the bolt,

\(P_2\) = External load on the bolt, and

\(a\) = Ratio of elasticity of connected parts to the elasticity of bolt.

For soft gaskets and large bolts, the value of \(a\) is high and the value of \(a/(1+a)\) is approximately equal to unity, so that the resultant load is equal to the sum of the initial tension and the external load. For hard gaskets or metal to metal contact surfaces and with small bolts, the value of \(a\) is small and the resultant load is mainly due to the initial tension (or external load, in rare case it is greater than initial tension). The value of \('a'\) may be estimated by the designer to obtain an approximate value for the resultant load. The values of
a/(1 + a) (i.e. K) for various type of joints are shown in the following table. The designer thus has control over the influence on the resultant load on a bolt by proportioning the sizes of the connected parts and bolts and by specifying initial tension in the bolt.

Values of K for various types of joints.

<table>
<thead>
<tr>
<th>Type of joint</th>
<th>K = \frac{a}{1 + a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal to metal joint with through bolts</td>
<td>0.00 to 0.10</td>
</tr>
<tr>
<td>Hard copper gasket with long through bolts</td>
<td>0.25 to 0.50</td>
</tr>
<tr>
<td>Soft copper gasket with long through bolts</td>
<td>0.50 to 0.75</td>
</tr>
<tr>
<td>Soft packing with through bolts</td>
<td>0.75 to 1.00</td>
</tr>
<tr>
<td>Soft packing with studs</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Design of Cylinder Covers

The cylinder covers may be secured by means of bolts or studs, but studs are preferred. The possible arrangement of securing the cover with bolts and studs is shown in Fig. 2 (a) and (b) respectively. The bolts or studs, cylinder cover plate and cylinder flange may be designed as discussed below:

1. **Design of bolts or studs**

In order to find the size and number of bolts or studs, the following procedure may be adopted.

Let
\[D = \text{Diameter of the cylinder}, \]
\[p = \text{Pressure in the cylinder}, \]
\[d_c = \text{Core diameter of the bolts or studs}, \]
\[n = \text{Number of bolts or studs, and} \]
\[\sigma_{ib} = \text{Permissible tensile stress for the bolt or stud material}. \]

We know that upward force acting on the cylinder cover,

\[P = \frac{\pi}{4} (D^2) p \quad \ldots(i) \]

This force is resisted by \(n \) number of bolts or studs provided on the cover.

Resisting force offered by \(n \) number of bolts or studs,

\[P = \frac{\pi}{4} (d_c)^2 \sigma_{ib} \times n \quad \ldots(ii) \]

From equations \((i)\) and \((ii)\), we have
Design of Machine Members-I

From this equation, the number of bolts or studs may be obtained, if the size of the bolt or stud is known and vice-versa. Usually the size of the bolt is assumed. If the value of \(n \) as obtained from the above relation is odd or a fraction, then next higher even number is adopted. The bolts or studs are screwed up tightly, along with metal gasket or asbestos packing, in order to provide a leak proof joint. We have already discussed that due to the tightening of bolts, sufficient tensile stress is produced in the bolts or studs. This may break the bolts or studs, even before any load due to internal pressure acts upon them. Therefore a bolt or a stud less than 16 mm diameter should never be used.

\[
\frac{\pi}{4} (D^2 - d^2) p = \frac{\pi}{4} (d_c)^2 c_{tb} \times n
\]

\[\text{...(ii)}\]

Fig. 2.

(a) Arrangement of securing the cylinder cover with bolts.
The tightness of the joint also depends upon the circumferential pitch of the bolts or studs. The circumferential pitch should be between 20 \(d_1 \) and 30 \(d_1 \), where \(d_1 \) is the diameter of the hole in mm for bolt or stud. The pitch circle diameter \((D_p) \) is usually taken as \(D + 2t + 3d_1 \) and outside diameter of the cover is kept as
\[
D_0 = D_p + 3d_1 = D + 2t + 6d_1
\]
where \(t \) = Thickness of the cylinder wall.

2. **Design of cylinder cover plate**

The thickness of the cylinder cover plate \((t_1) \) and the thickness of the cylinder flange \((t_2) \) may be determined as discussed below:

Let us consider the semi-cover plate as shown in Fig. 3. The internal pressure in the cylinder tries to lift the cylinder cover while the bolts or studs try to retain it in its position. But the centres of pressure of these two loads do not coincide. Hence, the cover plate is subjected to bending stress. The point \(X \) is the centre of pressure for bolt load and the point \(Y \) is the centre of internal pressure.

We know that the bending moment at \(A-A \),

\[
M = \frac{\text{Total bolt lead}}{2} (OX - OY) = \frac{P}{2} (0.318 \ D_p - 0.212 \ D_p)
\]

\[
= \frac{P}{2} \times 0.106 \ D_p = 0.053 \ P \times D_p
\]

\[
Z = \frac{1}{6} w (t_1)^2
\]

Where \(w \) = Width of plate

\[=\text{Outside dia. of cover plate} - 2 \times \text{dia. of bolt hole} = D_0 - 2d_1\]

Knowing the tensile stress for the cover plate material, the value of \(t_1 \) may be determined by using the bending equation,
3. Design of cylinder flange

The thickness of the cylinder flange \((t_2)\) may be determined from bending consideration. A portion of the cylinder flange under the influence of one bolt is shown in Fig. 4. The load in the bolt produces bending stress in the section \(X-X\). From the geometry of the figure, we find that eccentricity of the load from section \(X-X\) is

\[
e = \text{Pitch circle radius} - (\text{Radius of bolt hole} + \text{Thickness of cylinder wall})
\]

Width of the section \(X-X\),

\[
w = \frac{2\pi R}{n}
\]

Where \(n\) is the number of bolts.

Section modulus,
Knowing the tensile stress for the cylinder flange material, the value of t_2 may be obtained by using the bending equation \(\sigma_t = \frac{M}{Z} \).

References:
1. Machine Design - V. Bandari
Problems on cylinder cover plates design

Problem:
A steam engine cylinder has an effective diameter of 350 mm and the maximum steam pressure acting on the cylinder cover is 1.25 N/mm². Calculate the number and size of studs required to fix the cylinder cover, assuming the permissible stress in the studs as 33 MPa.

Solution. Given: $D = 350$ mm; $p = 1.25$ N/mm²; $\sigma_p = 33$ MPa = 33 N/mm²

Let
- d = Nominal diameter of studs,
- d_e = Core diameter of studs, and
- n = Number of studs.

We know that the upward force acting on the cylinder cover,

$$P = \frac{\pi}{4} \times D^2 \times p = \frac{\pi}{4} (350)^2 \times 1.25 = 120265 \text{ N} \quad \text{...(i)}$$

Assume that the studs of nominal diameter 24 mm are used. From Table 11.1 (coarse series), we find that the corresponding core diameter (d_e) of the stud is 20.32 mm.

.* Resisting force offered by n number of studs,

$$P = \frac{\pi}{4} \times (d_e)^2 \times \sigma_p \times n = \frac{\pi}{4} (20.32)^2 \times 33 \times n = 10700n \text{ N} \quad \text{...(ii)}$$

From equations (i) and (ii), we get

$$n = \frac{120265}{10700} = 11.24 \text{ say 12 Ans.}$$

Taking the diameter of the stud hole (d_1) as 25 mm, we have pitch circle diameter of the studs,

$$D_p = D_1 + 2t + 3d_1 = 350 + 2 \times 10 + 3 \times 25 = 445 \text{ mm}$$

...(Assuming $t = 10$ mm)

.* Circumferential pitch of the studs

$$\frac{\pi \times D_p}{n} = \frac{\pi \times 445}{12} = 116.5 \text{ mm}$$

We know that for a leak-proof joint, the circumferential pitch of the studs should be between $20 \sqrt{d_1}$ to $30 \sqrt{d_1}$, where d_1 is the diameter of stud hole in mm.

.* Minimum circumferential pitch of the studs

$$= 20 \sqrt{d_1} = 20 \sqrt{25} = 100 \text{ mm}$$

and maximum circumferential pitch of the studs

$$= 30 \sqrt{d_1} = 30 \sqrt{25} = 150 \text{ mm}$$

Since the circumferential pitch of the studs obtained above lies within 100 mm to 150 mm, therefore the size of the bolt chosen is satisfactory.

.* Size of the bolt = M 24 Ans.
Problem:
A mild steel cover plate is to be designed for an inspection hole in the shell of a pressure vessel. The hole is 120 mm in diameter and the pressure inside the vessel is 6 N/mm². Design the cover plate along with the bolts. Assume allowable tensile stress for mild steel as 60 MPa and for bolt material as 40 MPa.

Solution. Given : \(D = 120 \text{ mm} \) or \(r = 60 \text{ mm} \); \(p = 6 \text{ N/mm}^2 \); \(\sigma_t = 60 \text{ MPa} = 60 \text{ N/mm}^2 \); \(\sigma_{ib} = 40 \text{ MPa} = 40 \text{ N/mm}^2 \)

First for all, let us find the thickness of the pressure vessel. According to Lamé's equation, thickness of the pressure vessel,

\[
t = r \sqrt{\frac{\sigma_t + p}{\sigma_t - p}} - 1 = 60 \left(\sqrt{\frac{60 + 6}{60 - 6}} - 1 \right) = 6 \text{ mm}
\]

Let us adopt \(t = 10 \text{ mm} \)

Design of bolts

Let \(d \) = Nominal diameter of the bolts,
\(d_c \) = Core diameter of the bolts, and
\(n \) = Number of bolts.

We know that the total upward force acting on the cover plate (or on the bolts),

\[
P = \frac{\pi}{4} (D)^2 \quad p = \frac{\pi}{4} (120)^2 6 = 67867 \text{ N}
\]

Let the nominal diameter of the bolt is 24 mm. From Table 11.1 (coarse series), we find that the corresponding core diameter \((d_c) \) of the bolt is 20.32 mm.

.: Resisting force offered by \(n \) number of bolts,

\[
P = \frac{\pi}{4} (d_c)^2 \sigma_{ib} \times n = \frac{\pi}{4} (20.32)^2 \times 40 \times n = 67867 \text{ N} = 12973 \text{ N} \quad \text{... (ii)}
\]

From equations (i) and (ii), we get

\[
n = \frac{67867}{12973} = 5.23 \text{ say 6}
\]

Taking the diameter of the bolt hole \((d_1) \) as 25 mm, we have pitch circle diameter of bolts,

\[
D_p = D + 2t + 3d_1 = 120 + 2 \times 10 + 3 \times 25 = 215 \text{ mm}
\]

.: Circumferential pitch of the bolts

\[
\frac{\pi \times D_p}{n} = \frac{\pi \times 215}{6} = 112.6 \text{ mm}
\]

We know that for a leak proof joint, the circumferential pitch of the bolts should lie between 20\(\sqrt{d_1} \) to 30\(\sqrt{d_1} \), where \(d_1 \) is the diameter of the bolt hole in mm.

.: Minimum circumferential pitch of the bolts

\[
= 20\sqrt{25} = 20 \times 25 = 100 \text{ mm}
\]
and maximum circumferential pitch of the bolts
\[= 30 \sqrt{d_1} = 30 \sqrt{25} = 150 \text{ mm} \]

Since the circumferential pitch of the bolts obtained above is within 100 mm and 150 mm, therefore size of the bolt chosen is satisfactory.

\[\therefore \text{ Size of the bolt} = M 24 \text{ Ans.} \]

Design of cover plate

Let \(t_1 = \text{Thickness of the cover plate}. \)

The semi-cover plate is shown in Fig. 11.27.

We know that the bending moment at \(A-A \),
\[M = 0.053 \times 67 \times 860 \times 215 \]
\[= 773 \text{ 265 N-mm} \]

Outside diameter of the cover plate,
\[D_o = D_p + 3d_1 = 215 + 3 \times 25 = 290 \text{ mm} \]

Width of the plate,
\[w = D_o - 2d_1 = 290 - 2 \times 25 = 240 \text{ mm} \]

\[\therefore \text{ Section modulus,} \]
\[Z = \frac{1}{6} w t_1^2 = \frac{1}{6} \times 240 \times (t_1)^2 = 40 \times (t_1)^2 \text{ mm}^3 \]

We know that bending (tensile) stress,
\[\sigma_t = \frac{M}{Z} \quad \text{or} \quad 60 = \frac{773 \text{ 265}}{40 \times (t_1)^2} \]
\[\therefore (t_1)^2 = \frac{773 \text{ 265}}{40 \times 60} = 322 \text{ or } t_1 = 18 \text{ mm} \text{ Ans.} \]

References:

Eccentric Load Acting Parallel to the Axis of Bolts

Consider a bracket having a rectangular base bolted to a wall by means of four bolts as shown in Fig.1. A little consideration will show that each bolt is subjected to a direct tensile load of

$$W_{d1} = \frac{W}{n}, \text{ where } n \text{ is the number of bolts.}$$

Further the load W tends to rotate the bracket about the edge $A-A$. Due to this, each bolt is stretched by an amount that depends upon its distance from the tilting edge. Since the stress is a function of elongation, therefore each bolt will experience a different load which also depends upon the distance from the tilting edge. For convenience, all the bolts are made of same size. In case the flange is heavy, it may be considered as a rigid body.

Let w be the load in a bolt per unit distance due to the turning effect of the bracket and let W_1 and W_2 be the loads on each of the bolts at distances L_1 and L_2 from the tilting edge.

Load on each bolt at distance L_1,

$$W_1 = w.L_1$$

And moment of this load about the tilting edge

$$= w.L_1 \times L_1 = w (L_1)^2$$

Similarly, load on each bolt at distance L_2,

$$W_2 = w.L_2$$

And moment of this load about the tilting edge

$$= w.L_2 \times L_2 = w (L_2)^2$$

So, Total moment of the load on the bolts about the tilting edge

$$= 2w (L_1)^2 + 2w (L_2)^2 \ldots (i)$$
... (Since, there are two bolts each at distance of \(L_1 \) and \(L_2 \))

Also the moment due to load \(W \) about the tilting edge

\[
W.L = (W_1 L_1)^2 + 2W(L_2)^2 \quad \text{or} \quad \frac{W.L}{2} = \frac{W_1 L_1}{L_2} \quad \text{...(ii)}
\]

From equations \((i)\) and \((ii)\), we have

\[
W_1 = \frac{2W L_2}{2((L_1)^2 + (L_2)^2)} = \frac{W L_2}{2(L_1)^2 + (L_2)^2} \quad \text{...(iii)}
\]

It may be noted that the most heavily loaded bolts are those which are situated at the greatest distance from the tilting edge. In the case discussed above, the bolts at distance \(L_2 \) are heavily loaded.

So, Tensile load on each bolt at distance \(L_2 \),

\[
W_{t2} = W_2 = \frac{W L_2}{2(L_1)^2 + (L_2)^2} \quad \text{...(From equation (iii))}
\]

And the total tensile load on the most heavily loaded bolt,

\[
W_t = W_{t1} + W_{t2} \quad \text{...(iv)}
\]

If \(d_c \) is the core diameter of the bolt and \(\sigma_t \) is the tensile stress for the bolt material, then total tensile load,

\[
W_t = \frac{\pi}{4} (d_c)^2 \sigma_t \quad \text{...(v)}
\]

From equations \((iv)\) and \((v)\), the value of \(d_c \) may be obtained.

Problem:

A bracket, as shown in Fig.1, supports a load of 30 kN. Determine the size of bolts, if the maximum allowable tensile stress in the bolt material is 60 MPa. The distances are: \(L_1 = 80 \) mm, \(L_2 = 250 \) mm, and \(L = 500 \) mm.

Solution. Given: \(W = 30 \) kN; \(\sigma_t = 60 \) MPa = 60 N/mm\(^2\); \(L_1 = 80 \) mm; \(L_2 = 250 \) mm; \(L = 500 \) mm

We know that the direct tensile load carried by each bolt,

\[
W_{t1} = \frac{W}{n} = \frac{30}{4} = 7.5 \text{ kN}
\]

and load in a bolt per unit distance,

\[
w = \frac{W L}{2 [(L_1)^2 + (L_2)^2]} = \frac{30 \times 500}{2 [(80)^2 + (250)^2]} = 0.109 \text{ kN/mm}
\]
Since the heavily loaded bolt is at a distance of \(L_2 \) mm from the tilting edge, therefore load on the heavily loaded bolt,

\[W_{t2} = wL_2 = 0.109 \times 250 = 27.25 \text{ kN} \]

\[\therefore \text{ Maximum tensile load on the heavily loaded bolt,} \]

\[W_t = W_{t1} + W_{t2} = 7.5 + 27.25 = 34.75 \text{ kN} = 34750 \text{ N} \]

Let \(d_c \) = Core diameter of the bolts.

We know that the maximum tensile load on the bolt \((W_t) \),

\[34750 = \frac{\pi}{4} (d_c)^2 \sigma_t = \frac{\pi}{4} (d_c)^2 60 = 47 (d_c)^2 \]

\[\therefore (d_c)^2 = \frac{34750}{47} = 740 \]

or \(d_c = 27.2 \text{ mm} \)

From DDB (coarse series), we find that the standard core diameter of the bolt is 28.706 mm and the corresponding size of the bolt is M 33. **Ans.**

References:

Eccentric Load Acting Perpendicular to the Axis of Bolts

A wall bracket carrying an eccentric load perpendicular to the axis of the bolts is shown in Fig. 2.

![Fig. 2. Eccentric load perpendicular to the axis of bolts.](image)

In this case, the bolts are subjected to direct shearing load which is equally shared by all the bolts. Therefore direct shear load on each bolts,

\[W_s = \frac{W}{n} \text{, where } n \text{ is number of bolts.} \]

A little consideration will show that the eccentric load \(W \) will try to tilt the bracket in the clockwise direction about the edge A-A. As discussed earlier, the bolts will be subjected to tensile stress due to the turning moment. The maximum tensile load on a heavily loaded bolt \((W_t) \) may be obtained in the similar manner as discussed in the previous article. In this case, bolts 3 and 4 are heavily loaded.

Maximum tensile load on bolt 3 or 4,

\[W_{t2} = W_t = \frac{W L L_2}{2 (L_3)^2 + (L_1)^2} \]

When the bolts are subjected to shear as well as tensile loads, then the equivalent loads may be determined by the following relations:

Equivalent tensile load,

\[W_{te} = \frac{1}{2} \left[W_t + \sqrt{(W_t)^2 + 4(W_s)^2} \right] \]

And equivalent shear load,

\[W_{se} = \frac{1}{2} \left[\sqrt{(W_t)^2 + 4(W_s)^2} \right] \]

Knowing the value of equivalent loads, the size of the bolt may be determined for the given allowable stresses.
Problem:

For supporting the travelling crane in a workshop, the brackets are fixed on steel columns as shown in Fig. The maximum load that comes on the bracket is 12 kN acting vertically at a distance of 400 mm from the face of the column. The vertical face of the bracket is secured to a column by four bolts, in two rows (two in each row) at a distance of 50 mm from the lower edge of the bracket. Determine the size of the bolts if the permissible value of the tensile stress for the bolt material is 84 MPa. Also find the cross-section of the arm of the bracket which is rectangular.

Solution. Given: \(W = 12 \text{ kN} = 12 \times 10^3 \text{ N} \); \(L = 400 \text{ mm} \);
\(L_1 = 50 \text{ mm} \); \(L_2 = 375 \text{ mm} \); \(\sigma_t = 84 \text{ MPa} = 84 \text{ N/mm}^2 \); \(n = 4 \)

We know that direct shear load on each bolt,

\[
W_s = \frac{W}{n} = \frac{12}{4} = 3 \text{ kN}
\]

Since the load \(W \) will try to tilt the bracket in the clockwise direction about the lower edge, therefore the bolts will be subjected to tensile load due to turning moment. The maximum loaded bolts are 3 and 4 (See Fig.1), because they lie at the greatest distance from the tilting edge A–A (i.e. lower edge).

We know that maximum tensile load carried by bolts 3 and 4,

\[
W_t = \frac{W \cdot L_2}{2 \left[\left(L_1 \right)^2 + \left(L_2 \right)^2 \right]} = \frac{12 \times 400 \times 375}{2 \left[\left(50 \right)^2 + \left(375 \right)^2 \right]} = 6.29 \text{ kN}
\]

Since the bolts are subjected to shear load as well as tensile load, therefore equivalent tensile load,

\[
W_{te} = \frac{1}{2} \left[W_t + \sqrt{(W_t)^2 + 4(W_s)^2} \right] = \frac{1}{2} \left[6.29 + \sqrt{(6.29)^2 + 4 \times 3^2} \right] \text{ kN}
\]

\[
= \frac{1}{2} (6.29 + 8.69) = 7.49 \text{ kN} = 7490 \text{ N}
\]
Size of the bolt

Let \(d_c \) = Core diameter of the bolt.

We know that the equivalent tensile load \((W_{eq}) \),

\[
7490 = \frac{\pi}{4} (d_c)^2 \sigma_t = \frac{\pi}{4} (d_c)^2 84 = 66 (d_c)^2
\]

\[
(d_c)^2 = \frac{7490}{66} = 113.5 \quad \text{or} \quad d_c = 10.65 \text{ mm}
\]

From Table 11.1 (coarse series), the standard core diameter is 11.546 mm and the corresponding size of the bolt is M14. Ans.

Cross-section of the arm of the bracket

Let \(t \) and \(b \) = Thickness and depth of arm of the bracket respectively.

\[
Z = \frac{1}{6} t b^2
\]

Assume that the arm of the bracket extends upto the face of the steel column. This assumption gives stronger section for the arm of the bracket.

\[
\therefore \text{ Maximum bending moment on the bracket,} \quad M = 12 \times 10^3 \times 400 = 4.8 \times 10^6 \text{ N-mm}
\]

We know that the bending (tensile) stress \(\sigma_t \),

\[
84 = \frac{M}{Z} = \frac{4.8 \times 10^6 \times 6}{t b^2} = \frac{28.8 \times 10^6}{t b^2}
\]

\[
\therefore t b^2 = 28.8 \times 10^6 / 84 = 343 \times 10^3 \quad \text{or} \quad t = 343 \times 10^3 / b^2
\]

Assuming depth of arm of the bracket, \(b = 250 \text{ mm} \), we have

\[
t = 343 \times 10^3 / (250)^2 = 5.5 \text{ mm Ans.}
\]

References:

Eccentric Load on a Bracket with Circular Base

Sometimes the base of a bracket is made circular as in case of a flanged bearing of a heavy machine tool and pillar crane etc. Consider a round flange bearing of a machine tool having four bolts as shown in Fig. 1.

![Diagram](image)

Fig.1. Eccentric load on a bracket with circular base.

Let

- \(R \) = Radius of the column flange,
- \(r \) = Radius of the bolt pitch circle,
- \(w \) = Load per bolt per unit distance from the tilting edge,
- \(L \) = Distance of the load from the tilting edge, and
- \(L_1, L_2, L_3, \) and \(L_4 \) = Distance of bolt centers from the tilting edge \(A \).

As discussed in the previous article, equating the external moment \(W \times L \) to the sum of the resisting moments of all the bolts, we have,

\[
W/L = w\left[\frac{(L_1)^2 + (L_2)^2 + (L_3)^2 + (L_4)^2}{4}\right]
\]

\[
\therefore \quad w = \frac{W/L}{\frac{(L_1)^2 + (L_2)^2 + (L_3)^2 + (L_4)^2}{4}} \quad \ldots(i)
\]

Now from the geometry of the Fig. 1(b), we find that

- \(L_1 = R - r \cos \alpha \)
- \(L_2 = R + r \sin \alpha \)
- \(L_3 = R + r \cos \alpha \) and \(L_4 = R - r \sin \alpha \)

Substituting these values in equation \((i)\), we get

\[
w = \frac{W/L}{\frac{4R^2 + 2r^2}{4}}
\]

Load in the bolt situated at \(1 = w.L_1 = \frac{W.L.L_1}{4R^2 + 2r^2} = \frac{W.L(R - r \cos \alpha)}{4R^2 + 2r^2}
\]

This load will be maximum when \(\cos \alpha \) is minimum i.e. when \(\cos \alpha = -1 \) or \(\alpha = 180^\circ \).
Maximum load in a bolt

\[\frac{W L (R + r)}{4 R^2 + 2 r^2} \]

In general, if there are \(n \) number of bolts, then load in a bolt

\[\frac{2WL (R - r \cos \alpha)}{n (2R^2 + r^2)} \]

And maximum load in a bolt,

\[W_t = \frac{2WL (R + r)}{n (2R^2 + r^2)} \]

The above relation is used when the direction of the load \(W \) changes with relation to the bolts as in the case of pillar crane. But if the direction of load is fixed, then the maximum load on the bolts may be reduced by locating the bolts in such a way that two of them are equally stressed as shown in Fig. 2. In such a case, maximum load is given by

\[W_t = \frac{2WL}{n} \left[\frac{R + r \cos \left(\frac{180}{n} \right)}{2R^2 + r^2} \right] \]

Knowing the value of maximum load, we can determine the size of the bolt.

Note: Generally, two dowel pins as shown in Fig. 2, are used to take up the shear load. Thus the bolts are relieved of shear stress and the bolts are designed for tensile load only.

Problem:

A flanged bearing, as shown in Fig. 1, is fastened to a frame by means of four bolts spaced equally on 500 mm bolt circle. The diameter of bearing flange is 650 mm and a load of 400 kN acts at a distance of 250 mm from the frame. Determine the size of the bolts, taking safe tensile stress as 60 MPa for the material of the bolts.

Solution. Given: \(n = 4 \); \(d = 500 \text{ mm} \) or \(r = 250 \text{ mm} \); \(D = 650 \text{ mm} \) or \(R = 325 \text{ mm} \); \(W = 400 \text{ kN} = 400 \times 10^3 \text{ N} \); \(L = 250 \text{ mm} \); \(\sigma_t = 60 \text{ MPa} = 60 \text{ N/mm}^2 \)

Let \(d = \text{ Core diameter of the bolts.} \)

We know that when the bolts are equally spaced, the maximum load on the bolt,
From DDB, we find that the standard core diameter of the bolt is 45.795 mm and corresponding size of the bolt is M 52.

References:
Eccentric Load Acting in the Plane Containing the Bolts

When the eccentric load acts in the plane containing the bolts, as shown in Fig.1, then the same procedure may be followed as discussed for eccentric loaded riveted joints.

![Diagram showing an eccentric load in the plane containing the bolts](image)

Fig. 1. Eccentric load in the plane containing the bolts.

Problem:

Fig.2 shows a solid forged bracket to carry a vertical load of 13.5 kN applied through the centre of hole. The square flange is secured to the flat side of a vertical stanchion through four bolts. Calculate suitable diameter D and d for the arms of the bracket, if the permissible stresses are 110 MPa in tension and 65 MPa in shear. Estimate also the tensile load on each top bolt and the maximum shearing force on each bolt.

Solution. **Given:** $W = 13.5 \text{ kN} = 13500 \text{ N}$; $\sigma_t = 110 \text{ MPa} = 110 \text{ N/mm}^2$; $\tau = 65 \text{ MPa} = 65 \text{ N/mm}^2$

![Diagram showing the bracket and stanchion](image)

Fig. 2

![Diagram showing the bolts in the plane containing the stanchion](image)

Fig. 3
Diameter for the arm of the bracket

The section of the arm having \(D \) as the diameter is subjected to bending moment as well as twisting moment. We know that bending moment,

\[
M = 13\,500 \times (300 - 25) = 3712.5 \times 10^3 \text{ N-mm}
\]

and twisting moment,

\[
T = 13\,500 \times 250 = 3375 \times 10^3 \text{ N-mm}
\]

\[
\therefore \text{ Equivalent twisting moment,}
T_e = \sqrt{M^2 + T^2} = \sqrt{(3712.5 \times 10^3)^2 + (3375 \times 10^3)^2} \text{ N-mm}
\]

\[
= 5017 \times 10^3 \text{ N-mm}
\]

We know that equivalent twisting moment \((T_e)\),

\[
5017 \times 10^3 = \frac{\pi}{16} \times \tau \times D^3 = \frac{\pi}{16} \times 65 \times D^3 = 12.76 \, D^3
\]

\[
\therefore \quad D^3 = 5017 \times 10^3 / 12.76 = 393 \times 10^3
\]

or

\[
D = 73.24 \text{ say 75 mm Ans.}
\]

Diameter for the arm of the bracket

The section of the arm having \(d \) as the diameter is subjected to bending moment only. We know that bending moment,

\[
M = 13\,500 \left(\frac{250 - 75}{2} \right) = 2868.8 \times 10^3 \text{ N-mm}
\]

and section modulus,

\[
Z = \frac{\pi}{32} \times d^3 = 0.0982 \, d^3
\]

We know that bending (tensile) stress \((\sigma) \),

\[
110 = \frac{M}{Z} = \frac{2868.8 \times 10^3}{0.0982 \, d^3} = 29.2 \times 10^6 / d^3
\]

\[
\therefore \quad d^3 = 29.2 \times 10^6 / 110 = 265.5 \times 10^3 \text{ or } d = 64.3 \text{ say 65 mm Ans.}
\]

Tensile load on each top bolt

Due to the eccentric load \(W \), the bracket has a tendency to tilt about the edge \(E-E \), as shown in Fig. 11.46.

Let

\[
w = \text{Load on each bolt per mm distance from the tilting edge due to the tilting effect of the bracket.}
\]

Since there are two bolts each at distance \(L_1 \) and \(L_2 \) as shown in Fig. 11.46, therefore total moment of the load on the bolts about the tilting edge \(E-E \)

\[
= 2 (wL_1) L_1 + 2(wL_2) L_2 = 2w [(L_1)^2 + (L_2)^2]
\]

\[
= 2w [(37.5)^2 + (237.5)^2] = 115 \, 625 \, w \text{ N-mm} \quad \ldots (i)
\]

\[
\therefore \quad L_1 = 37.5 \text{ mm and } L_2 = 237.5 \text{ mm}
\]

and turning moment of the load about the tilting edge

\[
= WL = 13\,500 \times 300 = 4050 \times 10^3 \text{ N-mm} \quad \ldots (ii)
\]

From equations (i) and (ii), we have

\[
w = \frac{4050 \times 10^3}{115 \, 625} = 35.03 \text{ N/mm}
\]

\[
\therefore \quad \text{Tensile load on each top bolt}
\]

\[
= wL_j = 35.03 \times 237.5 = 8320 \text{ N Ans.}
\]
Maximum shearing force on each bolt

We know that primary shear load on each bolt acting vertically downwards,

\[W_{s1} = \frac{W}{n} = \frac{13500}{4} = 3375 \text{ N} \quad \text{...(1: No. of bolts, } n = 4) \]

Since all the bolts are at equal distances from the centre of gravity of the four bolts \((G)\), therefore the secondary shear load on each bolt is same.

Distance of each bolt from the centre of gravity \((G)\) of the bolts,

\[l_1 = l_2 = l_3 = l_4 = \sqrt{(100)^2 + (100)^2} = 141.4 \text{ mm} \]

![Diagram with labels and calculations]

: Secondary shear load on each bolt,

\[W_{s2} = \frac{W \times l_2}{(l_1)^2 + (l_2)^2 + (l_3)^2 + (l_4)^2} = \frac{13500 \times 230 \times 141.4}{4 (141.4)^3} = 5967 \text{ N} \]

Since the secondary shear load acts at right angles to the line joining the centre of gravity of the bolt group to the centre of the bolt as shown in Fig. 4, therefore the resultant of the primary and secondary shear load on each bolt gives the maximum shearing force on each bolt. From the geometry of the Fig. 4, we find that

\[\theta_1 = 04 = 135^\circ, \text{ and } \theta_2 = 03 = 45^\circ \]

Maximum shearing force on the bolts 1 and 4

\[= \sqrt{(W_{s1})^2 + (W_{s2})^2 + 2 \times W_{s1} \times W_{s2} \times \cos 135^\circ} \]

\[= \sqrt{(3375)^2 + (5967)^2 - 2 \times 3375 \times 5967 \times 0.7071} = 4303 \text{ N Ans.} \]

And maximum shearing force on the bolts 2 and 3
\[\begin{align*}
= & \sqrt{(W_{x1})^2 + (W_{x2})^2 + 2 \cdot W_{x1} \cdot W_{x2} \cdot \cos \ 45^\circ} \\
= & \sqrt{(3375)^2 + (5967)^2 + 2 \times 3375 \times 5967 \times 0.7071} = 8687 \text{ N Ans.}
\end{align*}\]

References: