Fundamentals of Electric Circuit

Lecture1

Introduction Units, Definition and Simple Circuits

References

- 1- Robert L. Boylestad, Introductory Circuit Analysis.
- 2- U. A. Bakshi, Basic Electrical Engineering.
- 3-S. Kumar, A Text Book of Electrical Engineering.
- 4- U. A. Bakshi, Basic of Electrical Engineering.
- 5- P. S. Subramanyam, Basic Concepts of Electrical Engineering.
- 6- S. K. Sahdev, Basic Electrical Engineering.
- 7-R. Prasad, Fundamentals of Electrical Engineering.
- All figures are taken from the reference
 (Robert L. Boylestad, Introductory Circuit Analysis, Tenth Edition)

International System of Units(SI)

The table below illustrates the most important units that are related to our subject.

Quantity	Symbol	Units
Time	t	Second(s)
Length	1	Meter(m)
Temperature	Т	Kelvin(K)
Charge	Q	Coulomb(C)
Current	I	Ampere (A)
Voltage	V	Volt(V)
Force	F	Newton(N)
Power	Р	Watts(W)
Energy	W	Joules(J)

Scientific Notation

Power of 10	Prefix	Abbreviation
10 ¹²	Tera	T
10 ⁹	Giga	G
10 ⁶	Mega	M
10 ³	Kilo	k
10 ⁻³	Milli	M
10 ⁻⁶	Micro	μ
10 ⁻⁹	Nano	n
10 ¹²	Pico	р

Structure of Atoms

 To understand the concepts of current and voltage, it is necessary to know the atoms and their structure.

• Generally, the atom includes three particles; the neutron, the proton, and the electron. The table below gives the information about each particle.

Fundamental Particles of Matter	Symbol	Charge	Mass in Kg
Neutron	n	0	1.6 × 10 ⁻
Proton	P+	Positive	1.6 × 10 ⁻
Electron	e ⁻	negative	9.107×1

Current

The current can be defined as the flow of electric charge through the material per unit time.

The mathematical formula of current is as follows:

$$I = \frac{Q}{t} \quad (Ampere(A))$$

where Q (coulomb) is the charge and t (sec) is the time.

EX: The charge flowing through the conductor is 0.16 C every 64 ms. Determine the current in ampere.

Solution:

$$I = \frac{Q}{t} = \frac{0.16}{64 \times 10^{-3}} = 2.5 A$$

<u>Current:</u> flow of charge (electrons) within a conductor or how fast charge is moving. Charge will only flow if there is a voltage source (potential difference).

Symbol for Current = | Unit for Current = Amps (A)

Electric Current

- Electric current is the continuous flow of electric charge
- Two types of current are direct and alternating
- Direct current (DC) is when the charge flows in one direction
- Alternating current (AC) is when the flow of electric charge regularly reverses direction
- An example of a direct current is a flashlight and most battery-operated devices
- Alternating current is in your home and school
- Current is defined as the direction in which the positive charges would flow

Current in Amps	Effect on A Person
0.001 Amps	Can be felt
0.005 Amps	Painful
0.010 Amps	Involuntary muscle spasms
0.015 Amps	Loss of muscle control
0.070 Amps	If through heart, serious injury, likely fatal if it lasts more than 1 second

Voltage

- In order for a charge to flow in a conducting wire, the wire must be connected in a complete loop that includes a source of electrical energy
- A flashlight will not work if there is no battery **Voltage:** the charge (electron) "pusher." Voltage causes current to flow/move.

Voltage sources:

Battery

Generator

Outlets

Symbol for voltage = V Unit for voltage = Volts (V)

Voltage

 The potential difference between two points is the work that has to be done to move a unit charge from one point to other. It is measured in volts.

$$V = \frac{W}{Q} \quad (Volts(V))$$

where W is the work done (Joules) and Q is the charge.

$$W = V.Q$$
 (Joules)

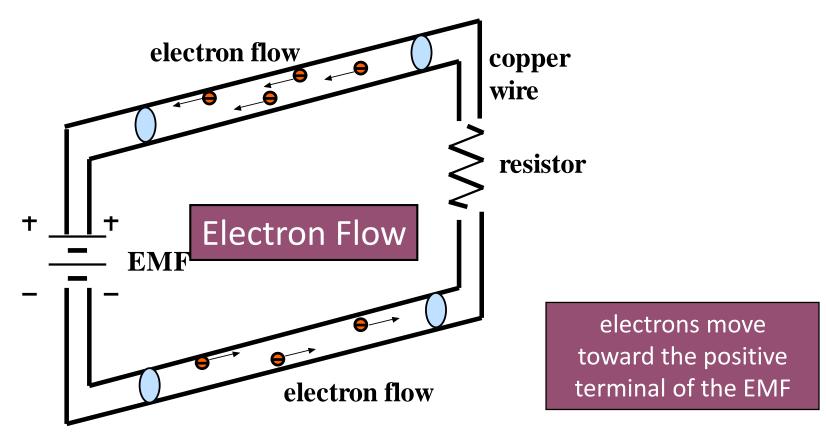
EX: Find the potential difference between the two points in an electrical system if 60 Joules of energy are expended by charge of 20 C between these two points.

Solution:

$$V = \frac{W}{Q} = \frac{60}{20} = 3 V$$

Voltage Sources

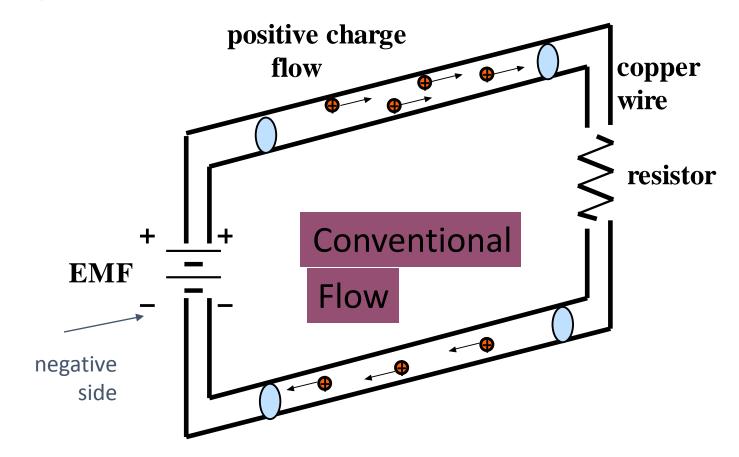
- Three common voltage sources are batteries, solar cells and generators
- A battery is a device that converts chemical energy to electrical energy
- In a 9-volt battery the voltage drop is about 9 volts


Potential Difference

- Reminder potential energy is related to position
- Charges flow from a high to low potential energy
- Potential difference is the difference in electrical potential energy between two places in an electric field

Basic Laws of Circuits

Current


Under the influence of an electromotive force, the one valence electron of each copper atom is pulled from the outer orbit and moves through the copper space toward a positive potential.

Basic Laws of Circuits

Ohm's Law: Current

Conventional current flow assumes positive charges move toward the negative side of the circuit EMF.

