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Numerical Analysis Third Year

Chapter One - Numerical Errors and Roots of Equations

1.1. Introduction

Nowadays, computers and numerical methods provide an alternative for such complicated
calculations. Using computer power to obtain solutions directly, you can approach these calculations
without recourse to simplifying assumptions or time-intensive techniques. Although analytical
solutions are still extremely valuable both for problem solving and for providing insight, numerical
methods represent alternatives that greatly enlarge your capabilities to confront and solve problems.

As a result, more time is available for the use of your creative skills.

There are several reasons why you should study numerical methods:

1. Numerical methods are extremely powerful problem-solving tools. They are capable of handling
large systems of equations, nonlinearities, and complicated geometries that are familiar in
engineering practice and that are often impossible to solve analytically. As such, they greatly
enhance your problem-solving skills.

2. During your careers, you may often have occasion to use commercially available prepackaged, or
“canned,” computer programs that involve numerical methods. The intelligent use of these
programs is often predicated on knowledge of the basic theory underlying the methods.

3. Many problems cannot be approached using canned programs. If you are familiar with numerical
methods and are proficient in computer programming, you can design your own programs to solve
problems without having to buy expensive software.

4. Numerical methods are an efficient medium for learning to use computers. It is well known that
an effective way to learn programming is to write computer programs. Because numerical methods
are for the most part designed for implementation on computers, they are ideal for this purpose.

5. Numerical methods provide a means for you to reinforce your understanding of mathematics.
Because one function of numerical methods is to reduce higher mathematics to basic arithmetic

operations.

1.2. Significant Figures (Digits)

This course deals extensively with approximations connected with the manipulation of
numbers. Consequently, before discussing the errors associated with numerical methods, it is useful
to review basic concepts related to approximate representation of the numbers themselves. Whenever
we employ a number in a computation, we must have assurance that it can be used with confidence.
For example, Fig. 1.1 shows a speedometer and odometer from an automobile. Visual inspection of

the speedometer indicates that the car is traveling between 48 and 49 km/h. Because the indicator is
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higher than the midpoint between the markers on the gauge, we can say with confidence that the
car is traveling at approximately 49 km/h. However, let us say that we insist that the speed be
estimated to one decimal place. For this case, one person might say 48.8, whereas another might
say 48.9 km/h. Therefore, because of the limits of this instrument, only the first two digits can be
used with confidence. Estimates of the third digit (or higher) must be viewed as approximations.
Based on this speedometer, it would be ridiculous to claim that the automobile is traveling at
48.8642138 km/h. In contrast, the odometer provides up to six certain digits. From Fig. 1.1, we can
conclude that the car has traveled slightly less than 87,324.5 km during its lifetime. In this case, the

seventh digit (and higher) is uncertain.

N =
S 20 100" Z
= =
=0 120 —

& 87324M )y

Fig. 1.1 An automobile speedometer and odometer illustrating the concept of a significant figure.

The concept of a significant figure, or digit, has been developed to specify the reliability of a
numerical value. The significant digits of a number are those that can be used with confidence.
They correspond to the number of certain digits and one estimated digit. For example, the
speedometer and the odometer in Fig. 1.1 yield readings of three and seven significant figures,
respectively. For the speedometer, the two certain digits are 48. It is conventional to set the estimated
digit at one-half of the smallest scale division on the measurement device. Thus, the speedometer
reading would consist of the three significant figures: 48.5. In a similar fashion, the odometer would
yield a seven-significant-figure reading of 87,324.45.

The rules for identifying significant figures when writing or interpreting numbers can be
summarized as follows;

e Leading zeros that come before the first nonzero number are not significant figures, for example,
"013",“0.13” and “0.0013” have two significant figures: “1” and “3”.

e Trailing zeros (zeros after non-zero numbers) in a number without a decimal are not significant
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figures, for example, "130" has two significant figures: “1” and “3”.

e Leading zeros before the first nonzero digit in decimal fractions (i.e., in the presence of decimal
point) are not significant figures because they are necessary just to locate a decimal point. For
example, the numbers 0.00001845, 0.0001845, 0.001845, and 0.01845 all have four significant
figures.

e Trailing zeros used in decimal fractions (i.e., in the presence of decimal point) are significant
digits. For example, the numbers 4.53, 4.530, and 4.5300 have three, four, and five significant
figures, respectively.

An example explaining these rules can be seen in the following table;

Number Decimal Places Significant Figures (Digits)
1725 0 4
0725 0 3

07250.0 1 5
7250 0 3

25.870 3 5
0.7013 4 4
1.7013 4 5

0.00215 5 3

0.01230 5 4

0.0123 4 3
1.0123 4 5
01.01230 5 6

1.3. Fixed Point and Floating Point Numbers Representation

The real numbers include all the rational numbers (which are the numbers that can be expressed
as fractions of two integers), such as the integer —5 and the fraction 4/3, and all the irrational numbers
(which are all the real numbers which are not rational numbers), such asthe square root of
V2 (1.41421356). There are two major approaches to store real numbers in in digital computers. These
are (a) fixed point notation and (b) floating point notation. In fixed-point notation, there are a fixed
number of digits after the decimal point (such as 70.825, 7.000, 0001, and 0.015). While floating-
point numbers are represented with a fixed number of significant digits and scaled using
an exponent in some fixed base; the base for the scaling is normally two, ten, or sixteen ( such as

72.056 x 107, 72056 x 102, or 0.72056 x 10%).

1.4. Accuracy and Precision
The errors associated with both calculations and measurements can be characterized with regard

to their accuracy and precision. Accuracy refers to how closely a computed or measured value agrees
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with the true value. Precision refers to how closely individual computed or measured values agree

with each other.

Increasing accuracy

Increasing precision

K\\SD/))’] e )
= =/

Fig. 1.2 An example from marksmanship illustrating the concepts of accuracy and precision. (a)
Inaccurate & imprecise; (b) Accurate & imprecise; (¢) Inaccurate & precise; (d) Accurate & precise.

1.5. Numerical Errors

Numerical errors arise from the use of approximations to represent exact mathematical
operations and quantities. These include fruncation errors, which result when approximations are
used to represent exact mathematical procedures, and round-off errors, which result when numbers
having limited significant figures are used to represent exact numbers. For both types, the relationship

between the exact, or true, result and the approximation can be formulated as

Error = True value - Approximation (1.1)

1.6. Roots of Equations
Although they arise in other problem contexts, roots of equations frequently occur in the area

of engineering design. You have previously learned to use the quadratic formula

—-bFVb2—-4ac
X = (1.2)
2a
to solve fx)=ax?*+bx+c=0 (1.3)

The values calculated with Eq. (1.2) are called the “roots” of Eq. (1.3). They represent the
values of x that make Eq. (1.3) equal to zero. Thus, we can define the root of an equation as the value
of x that makes f( x ) = 0. For this reason, roots are sometimes called the zeros of the equation.

Although the quadratic formula is handy for solving Eq. (1.3), there are many other functions

for which the roots cannot be determined easily. For these cases, the numerical methods provide
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efficient means to obtain the answer. The following sections of this chapter deal with a variety of
numerical methods for determining roots of relationships. These methods can be divided into two
groups; the bracketing methods with initial guesses that bracket or contain the root and open methods

that do not require initial guesses to bracket the root.

1.6.1. Bracketing Methods

This group of methods for finding roots of equations is based on the fact that a function typically
changes sign in the vicinity of a root. These techniques are called bracketing methods because two
initial guesses for the root are required. As the name implies, these guesses must “bracket,” or be on
either side of, the root. The particular methods described herein employ different strategies to
systematically reduce the width of the bracket and, hence, home in on the correct answer.

The roots can occur (or be absent) in an interval prescribed by a lower bound (xi) and an upper
bound (xu). Fig. 1.3b represents the case where a single root is bracketed by negative and positive
values of f(x). However, Fig. 1.3d, where f(xi) and f(x.) are also on opposite sides of the x axis, shows
three roots occurring within the interval. In general, if f{xi) and f(x,) have opposite signs, there are an
odd number of roots in the interval. If f{x1) and f(xu) have the same sign, as indicated by Fig. 1.3a
and c, there are either no roots or an even number of roots between the values.

Graphical method is a simple method for obtaining an estimate for the root of the equation by
plotting the function and observing where it crosses the x axis. However, it is of limited practical use
because it is not precise and can only be utilized to obtain rough estimates of roots. These estimates
can be employed as starting guesses for numerical methods discussed in this chapter. Two specific

methods are covered: bisection and false position.

f(x) f(x) f(x) f(x)

- ——] ——
P
o R

(a) (b) (c) (d)

Fig. 1.3 Tllustration of a number of general ways that a root may occur in an interval prescribed by a
lower bound (x;) and an upper bound (x,). Parts (a) and (c) indicate that if both f{x;)and f(x,) have
the same sign, either there will be no roots or there will be an even number of roots within the
interval. Parts (b) and (d) indicate that if the function has different signs at the end points, there will
be an odd number of roots in the interval.
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1.6.1.1. The Bisection Method

We have previously observed that f{x) changed sign on opposite sides of the root. In general, if

f(x) 1s real and continuous in the interval from x; to xy and f{xi)and f{(x.) have opposite signs, that is,

fQ) f(x) <0 (1.4)

then there is at least one real root between x; to xu. A simple algorithm for the bisection calculation

can be listed as;

Step 1: Choose lower x; and upper xu guesses for the root such that the function changes sign over
the interval. This can be checked by ensuring that f(x;) f(x,) <O

Step 2: An estimate of the root (x;) is determined by

. _ _ X+ Xy
Estimate of the root = x, = > (1.5)

Step 3: Make the following evaluations to determine in which subinterval the root lies:
(@) If f(xp) f(x,.) <0, the root lies in the lower subinterval. Therefore, set x,, = x, and return
to Step 2.
(b) If f(x;) f(x;.) > 0 , the root lies in the upper subinterval. Therefore, set x; = x, and return
to Step 2.
©If f(x) f(x,) = 0, the root equals x,; terminate the computation.
Step 3: Iterations continued until the percent relative error (g), defined in the equation below, becomes

less than a pre-specified stopping criterion.

new old
Xy - Ar

new
xT‘

£ = « 100% (1.6)

Example (1.1): Using the bisection method with initial guesses of x; =5 and xy = 7, find the root of

the equation 0.6x? = 2.4x + 5.5 Iterate until the error falls below 3%.

Solution:
With x; = 5, x,, = 7, the initial guess of the root using the bisection method x, = % = % =6
Iteration X1 Xu Xr fx) fxw) fxr) € (%)
1 5 7 6 2.5 -7.1 -1.7 /
2 55 2.5 -1.7 0.55 9.091
3 5.5 6 5.75 0.55 -1.7 -0.54 4.348
4 5.5 5.75 5.625 0.55 -0.538 0.0156 2222

University of Baghdad — College of Engineering — Mech. Eng. Dept. — 2019/2020 Dr. Wail Sami Sarsam
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Example (1.2): The relation between the velocity, mass, time, acceleration, and drag coefficient for

a parachutist is presented in the following equation
_9mq _ o—(c/mit) _
floy="=(1-e )—v
Using the bisection method with initial guesses of (12) and (16), determine the drag coefficient (c)
needed for a parachutist of mass (m) = 68.1 kg to have a velocity (v) of 40 m/s after free-falling for

time t= 10 s. Take the acceleration due to gravity (g) = 9.81 m/s? and iterate until the error falls below

a stopping criterion of 2%

Solution:

Using the bisection method, the initial estimate of the root x; lies at the midpoint of the interval

X1+ xy 12+16

x; =12, x,, = 16, DX = T = =14

m 9.81 * 68.1
fla) = gT(l — e (@m) —p = ——5——(1 - e7(/6B0) — 40 = 6.1139

m 9.81 * 68.1
fla) = gT(l —e (/M) —p = T(l — g~(16/68:):10) _ 40 = —2.2303

Iteration Xi Xu Xr ftxy ftew) fxr) € (%)

1 12 16 14 6.114 -2.230 1.611 /
2 14 16 15 1.611 -2.230 -0.384 6.667
3 14 15 14.5 1.611 -0.384 0.594 3.448
4 14.5 15 14.75 0.594 -0.384 0.100 1.695

Exercise (1.1):

a) Using the bisection method with initial guesses of x; =—1 and x, = 0, find the roots of the equation

f(x) =—13 — 20x + 19x* — 3x>. Iterate until the error falls below 10%.

b) Use the bisection method to find the root of the equation e* = sin x located between -4 and -3. Note
that x is in radians.
¢) Use the bisection method to locate the root of the equation f(x)=x'" -1 lying between x = 0 and

1.3. Use four decimal digits during the computation and iterate until the error falls below 10%.

1.6.1.2. The False-Position Method

Although the bisection method is a perfectly valid technique for locating the roots of equations,

it has a shortcoming in dividing the interval from x; to xu into equal halves with no account for the
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magnitudes of f{x1) and f{xu). For example, if f{(xi) is much closer to zero than f(xu), it is likely that the
root is closer to xl than to xu (Fig. 1.4). An alternative method that utilizes this graphical insight is to
join f(xi) and f{xu) by a straight line. The intersection of this line with the x-axis represents an
improved estimate of the root. The fact that the replacement of the curve by a straight line gives a
“false position” of the root is the origin of the name, method of false position. 1t is also called the
linear interpolation method.

From (Fig. 1.4) and using similar triangles, the intersection of the straight line with the x axis

can be estimated as

JICONNN(ED -
Xr— X1 Xr — Xy
which can be solved, after some algebraic manipulations, to give
_ _ f(xu)(xl - xu) (1.8)

T T TG — fl)

The calculation procedure for the root and the stopping criterion for iterations are the same as

the bisection method.
fx)

t ( X )

Sx)

Fig. 1.4 A graphical representation of the false position method. The similar triangles used to derive
the formula for the method are shaded.

Example (1.3): Repeat Example (1.2) using the false-position method to determine the root of the

same equation investigated.
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Solution:

Using the false-position method with x; = 12, x,, = 16, f(x;) = 6.1139, f(x,) = —2.2303

_ L S x)
> X = %, — LT = 14,9309
Iteration Xi Xu Xr fte) ftew) fxr) € (%)
1 12 16 14.9309 6.1139 -2.2303 -0.2515 /
2 12 14.9309 14 8151 6.1139 -0.2515 -0.0271 0.782
Exercise (1.2):

a) Determine the root of fx) = -25 + 82x - 90x? + 44x> - 8x* + 0.7x° using the false position method.
Employ initial guesses of x; = 0.5 and xu = 1.0 and iterate until the error falls below 1%.

b) Using the false position method with initial guesses of x; = —1 and x, = 0, find the roots of the
equation fix) = —13 — 20x + 19x? — 3x°. Iterate until the error falls below 10%.

¢) Find the root of the equation x tan x = -1 located between 2.5 and 3 using the false position method.

d) Using the false position method with two iterations, locate the root of the equation x*+x —1=0

lying between x = 0 and 1.

1.6.2. Open Methods

In the bracketing methods, the root is located within an interval prescribed by a lower and an
upper bound. Repeated application of these methods always results in closer estimates of the root.
Such methods are said to be convergent because they move closer to the truth as the computation
progresses (Fig. 1.5a). In contrast, the open methods are based on formulas that require only a single
starting value of x or two starting values that do not necessarily bracket the root. As such, they
sometimes diverge or move away from the true root as the computation progresses (Fig. 1.5b).
However, when the open methods converge (Fig. 1.5¢), they usually do so much more quickly than

the bracketing methods.
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fx) flx) flx)

(b)

Fig. 1.5 Graphical depiction of the fundamental difference between the (a) bracketing and (b) and
(c¢) open methods for root location. In (a), which is the bisection method, the root is constrained
within the interval prescribed by x; and x,. In contrast, for the open method depicted in (b) and (c), a
formula is used to project from x; to x;+11n an iterative fashion. Thus, the method can either ()
diverge or (c) converge rapidly, depending on the value of the initial guess.

1.6.2.1. Simple Fixed-Point Iteration

This method to predict the root of an equation employs a formula that can be developed by
rearranging the function f{x) = 0 so that x is on the left-hand side of the equation. This transformation
can be accomplished either by algebraic manipulation or by simply adding x to both sides of the

original equation

x= g(x) (1.9)
For example, Ax) =0 x= g(x)
fx) =x?-2x+3=0 x:x22+3
f(x) =sinx =0 X =sinx +x

The utility of Eq. (1.9) is that it provides a formula to predict a new value of x as a function of
an old value of x. Thus, given an initial guess at the root x;, Eq. (1.9) can be used to compute a new

estimate x;+1 as expressed by the iterative formula
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Xiv1 = g(xi) (1.10)
As with other iterative methods in this chapter, iterations continued until the percent relative
error, defined in the equation below, becomes less than a pre-specified stopping criterion.

Xiv1 — X

* 100% (1.11)
Xi+1

Example (1.4): Use simple fixed-point iteration to locate the root of f(x) = e™ — x . Start with an

initial guess of x = 0 and iterate until the error falls below 10%.

Solution: The function can be separated directly and expressed in the form of Eq. (1.10) as

Xiyp =€ 1

Iteration Xi € (%)
0 0 /
1 1.000000 100.0
2 0.367879 171.8
3 0.692201 469
4 0.500473 383
5 0.606244 17.4
6 0.545396 11.2
7 0.579612 5.90

Exercise (1.3):

a) Use simple fixed-point iteration to locate the root of f(x) = sin(\/E) — x . Use an initial guess of
xo = 0.5 and iterate until error falls below 2%.

b) Determine the root of Ax) = 2x* - 11.7x*> + 17.7x - 5 using simple fixed-point iteration method.
Make three iterations and start with an initial guess of xo = 3.

¢) Consider the equation f{x)= 5x? - 20x + 3. Use simple fixed-point iteration to locate the root using

an initial estimate of xo = O with three iterations.

1.6.2.2. The Newton-Raphson Method

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson equation
(Fig. 1.6). If the initial guess at the root is x;, a tangent can be extended from the point [x;, Axi)]. The
point where this tangent crosses the x axis usually represents an improved estimate of the root. As in

Fig. 1.6, the first derivative at x; is equivalent to the slope:
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, fG) -0
fle) = —— (1.12)
Xi = Xi+1

which can be rearranged to yield the following equation called the Newton-Raphson formula.
Iterations continued until the percent relative error, defined in the simple fixed-point iteration method,

becomes less than a pre-specified stopping criterion.

SO (1.13)

xi+1 = xl - f,(x)
3

f(x)

Slope = f"(x,)

fx) p-=mmmmmmm - ——

F fx) -0

Fig. 1.6 Graphical depiction of the Newton-Raphson method. A tangent to the function of x; [that is,
f' (x1)] is extrapolated down to the x-axis to provide an estimate of the root at x;:1.

Example (1.5): Use the Newton-Raphson method to estimate the root of f(x)=e™* —x ,

employing an initial guess of xo = 0 with four iterations.

Solution: The first derivative of the function can be evaluated as

fo)=—-e*~1
which can be substituted along with the original function into Eq. (1.13) to give
e ¥ —x;

Xig1 =X — oy

Starting with an initial guess of xo = 0, this iterative equation can be applied to compute

Iteration Xi € (%)
0 0 /
1 0.500000000 100.00
2 0.566311003 11.709
3 0.567143165 0.1467
4 0.567143290 2.204E-5
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Thus, the approach rapidly converges on the true root. Notice that the percent relative error at each

iteration decreases much faster than it does in simple fixed-point iteration method.

Exercise (1.4):

a) Determine the root of A(x) = 2x> - 11.7x* + 17.7x - 5 using Newton-Raphson method. Make three

iterations and start with an initial guess of xo = 3.

b) Use Newton-Raphson method to locate the root of f(x) = —0.9 x2 + 1.7 x + 2.5 . Use an initial
guess of xo = 5 and iterate until the error falls below 0.1%.

¢) Employ the Newton-Raphson method with initial guesses of (a) 4.52 and (b) 4.54 to determine the
root for f(x) = —1+ 5.5x —4x% + 0.5 x3 . Iterate until the error falls below 10%.

1.6.2.3. The Secant Method

The existence of certain functions whose derivatives may be extremely difficult or inconvenient
to evaluate represents a potential problem in implementing the Newton-Raphson method, which
requires the evaluation of the derivative for its use. For these cases, the derivative can be

approximated by a backward finite divided difference, as in (Fig. 1.7)

£lay) = f(xi-1) : f(x;) (1.14)

Xi-1 — X
This approximation can be substituted into Eq. (1.13) to yield the following iterative equation:

_ ) (ooq — x3)
flximg) — f(x)

Xis1 = X; (1.15)

Equation (1.15) is the formula for the secant method. Notice that the approach requires two initial
estimates of x. However, because f(x) is not required to change signs between the estimates, it is not
classified as a bracketing method. Iterations continued until the percent relative error becomes less

than a pre-specified stopping criterion.
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f(x)

J(xi)

f(-l',’_ )

Fig. 1.7 Graphical depiction of the secant method. This technique is similar to the Newton-Raphson
technique in the sense that an estimate of the root is predicted by extrapolating a tangent of the
function to the x-axis. However, the secant method uses a difference rather than a derivative to

estimate the slope.

False position Secant
f(x) fx,) f(x) fx,)

f(x) f(x) fxi_y)

X, X X
/(‘ 1)
(c) (d)

Fig. 1.8 Comparison of the false-position and the secant methods. The first iterations (a) and (b) for
both techniques are identical. However, for the second iterations (c) and (d), the points used differ.
Consequently, the secant method can diverge, as indicated in (d).
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Example (1.6): Use the secant method to estimate the root of f(x) = e™ — x . Start with initial

estimates of x.1 = 0 and x¢ = 1.0. Iterate until the error falls below 1%.

Solution: Remember that the true root is 0.56714329.
First iteration:

x4 =0 f(x_1) = 1.00000

xg=1 f(xy) = —0.63212

_ _ flxo)(x_1=x0) _ ;  (=063212) (0-1)
1= %o fx_D)-flxo) 1 1-(-0.63212) 0.61270

Second iteration:
xXo=1 f(xo) = —0.63212
x; = 0.61270 f(x;) = —0.07081

(Note that both estimates are now on the same side of the root.)

- _ f(xq) (o= x4) _ (=0.07081) (1-0.61270) _
Xy = X1 —f(xo)—f(xl) = 0.61270 (063212)—(=0.07081) 0.56384
& = Ixi+1—xi| «100% = 0.56384 — 0.61270| 100% = 8.666%

Xip1 | ' 056384
Third iteration:
x; = 0.61270 f(x;) = —0.07081
x, = 0.56384 f(x;) = 0.00518

Xy = %, — fxz) Gea=x3) _ 056384 — 0.00518 (0.61270— 0.56384) _ 056717
Fle)—f(x2) (—0.07081)—-0.00518

Xiy1 — X 0.56717— 0.56384
&= Ml *100% = |———m——

Xit1 I 0056717

* 100% = 0.587%

Exercise (1.5):

a) Determine the root of f{x) = 2x> - 11.7x* + 17.7x - 5 using Secant method. Make three iterations

and start with an initial estimates of x.; = 3, xo = 4.

b) Determine the root of f(x) = 7(sinx)e™* — 1 . Using the secant method with five iterations and
initial guesses of xi.1= 0.5 and x;= 0.4.

¢) Locate the root of f(x) = sinx + cos(1+ x2?) — 1 where x is in radians. Use four iterations of
the secant method with initial guesses of (a) xi.1 = 1.0 and x;=3.0; (b) xi.1= 1.5 and x;= 2.5, and

(¢) xi.1=1.5 and x; = 2.25 to locate the root. Use the graphical method to explain your results.
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Chapter Two - System of Linear Algebraic Equations

2.1. Introduction

In chapter one, we determined the value x that satisfied a single equation, f (x) = 0. In this
chapter, we deal with the case of determining the values of n unknowns xi, x2, . . . , xa that
simultaneously satisfy a set of n linear algebraic equations. Linear systems of equations are
associated with many problems in engineering and science. A system of algebraic equations has the

form

fl(xl, xz, ...,xn) = 0

fz(xl,xz, ey xn) = 0

fu(x1, %9, o0, %) =0
Such systems can be either linear or nonlinear. In this chapter, we deal with linear algebraic
equations that are of the general form
Ay X1 + A X+ o+ A Xy = by

a21 x1 + a22 xz + -+ aZn xn :bz

2.1)

An1 X1 + A Xy + - + app x, = by

where the a’s are constant coefficients, the b’s are constants, and n is the number of equations. All

other equations are nonlinear. In matrix notation, the equations are written as

a1 iz 0 Q1] [*1 b,
Az1 Gy - Gap| [X2| _ |by 2.2)
An1 Apz  *° Qpp Xn b

n
or simply, Ax=b (2.3)

A system of linear equations in n unknowns has a unique solution, provided that the
determinant of the coefficient matrix (A) is non-singular (a non-singular matrix is a square one
whose determinant is not zero), i.e., if |A| # 0. There are two classes of methods for solving system

of linear algebraic equations: direct and iterative methods.
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2.2. Direct Methods for Solving System of Linear Algebraic Equations

The common characteristics of direct methods are that they transform the original equation into
equivalent equations (equations that have the same solution) that can be solved more easily. The
transformation is carried out by applying certain operations. In this section, we will present two direct

methods: Gauss Elimination Method and Gauss-Jordan Method.

2.2.1. Gauss Elimination Method

Consider the following system of linear simultaneous equations:

a11 x1 + a12 xz + a13 x3 = bl (24)
a21 x1 + a22 xz + a23 x3 = bz (25)
a31 x1 + a32 xz + a33 x3 = b3 (26)

Gauss elimination reduces the coefficient matrix (4) into an upper triangular matrix through a
sequence of operations carried out on the matrix. The constants vector (b) is also modified in the
process. The solution vector {x} is obtained from a backward substitution procedure. The method

can be described by the following steps:

Step 1: Eliminate x1 from the second and third equations. Using the first Equation (2.4) and

assuming that a11 # 0, the following operations are performed:

Equation (2.5) — (%) x Equation (2.4) and Equation (2.6) — (%) x Equation (2.4)
11 11

giVeS aygq Xq + aix Xp + a3 X3 = bl (27)
ah, Xy +ah3 X3 = b (2.8)
as, X5 +az3x3 = by (2.9)

Equation (2.7) is called the pivotal equation and the coefficient a1 is the pivot.

Step 2: Eliminate x; from Equation (2.9) using Equation (2.8) by assuming that az; # 0. We

perform the following operation:

Equation (2.9) — (%) x Equation (2.8)
22

toobtain 11 X1 T Az Xz + a3 X3 = by (2.10)
gz X; + a3 %3 = by (2.11)
azz x3 = by (2.12)

University of Baghdad — College of Engineering — Mech. Eng. Dept. — 2019/2020 Dr. Wail Sami Sarsam
18


http://cbs.wondershare.com/go.php?pid=5261&m=db

mm Wondershare

Remove Watermark g PDFelement

Numerical Analysis Third Year

Here Eq. (2.11) is called the pivotal equation and the coefficient a’s is the pivot.

Step 3: To find x1, x2 and x3, we apply back substitution starting from Equation (2.12) giving
x3, then x; from Equation (2.11) and x; from Equation (2.10).

2.2.1.1. Pivoting

Gauss elimination method fails if any one of the pivots in the above equations (2.4) to (2.12)
becomes zero. To overcome this difficulty, the equations are to be rewritten in a slightly different

order such that the pivots are not zero.

a) Partial pivoting method

Step 1: The numerically largest coefficient of x; is selected from all the equations as pivot and
the corresponding equation becomes the first equation (2.4).

Step 2: The numerically largest coefficient of x; is selected from all the remaining equations
as pivot and the corresponding equation becomes the second equation (2.8). This process is repeated

until an equation into a single variable is obtained.

b) Complete pivoting method

In this method, we select at each stage the numerically largest coefficient of the complete matrix
of coefficients. This procedure leads to an interchange of the equations as well as interchange of the

position of variables.

Example (2.1): Solve the following equations by Gauss elimination method:
2x +4y—-6z=-4
x+5y+3z=10
x+3y+2z=5

Solution: Forward elimination is the first part of the procedure.

2x+ 4y - 6z=-4 Eq. 1
x+S5y+ 3z =10 Eq. 2
x+3y+ 2z =5 Eq.3

To eliminate x from (Eq.2) and (Eq.3) using (Eq.1):

2x +4y—-6z=-4
Eq.1+(2)*Eq.2 — -6y —12z=-24 Eq. 4
Eq.1+(2)*Eq.3 — —2y-10z=-14 Eq. 5
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To eliminate y from (Eq.5) using (Eq.4):
2x +4y—-6z=-4
-6y —12z=-24
Eq.4+(3)*Eq.5 — 18z= 18 - z=1
Evaluation of the unknowns by back substitution:
—6y—12z=-24 — —-6y—12x1=-24 - y=2
2x+4y—-6z=-4 - 2x+4x2-6x1=-+4 - x=-3

Example (2.2): Use Gauss elimination to solve
3x —0.1y-0.2z="7.85
0.1x+7y-03z=-193
03x—-02y+10z=714

Carry six significant figures during the computation. Verify the solution.

Solution: The first part of the procedure is forward elimination.

3x - 0.1y - 0.2z=7.85 Eq. 1
0.1x+7y - 03z=-19.3 Eq.2
0.3x—0.2y+ 10z =714 Eq.3

To eliminate x from (Eq.2) and (Eq.3) using (Eq.1):

3x =0.1y-0.2z="7.85
Eq.2+(-0.13)*Eq. 1 — 7.00333y — 0.293333z=—-19.5617 Eq. 4
Eq.3+(-03/3)*Eq. 1 — —0.190000y + 10.0200z = 70.6150 Eq. 5
To complete the forward elimination, y must be removed from (Eq.5) using (Eq.4):

3x —0.1y-0.2z="7.385

7.00333y — 0.293333z = —-19.5617

0.190000 * _
Eq.5+ (—7.00333) Eq. 4 — 10.0120z = 70.0843 Eq. 6
From Eq. 6 5 z=70.0843 / 10.0120 = 7.00000

This result can be back-substituted into Eq. 5:

7.00333y — 0.293333 (7.00000) = —-19.5617 — y =-2.50000
Finally, from Eq. 1:

3x —0.1(-2.50000) — 0.2 (7.00000) = 7.85 — x = 3.00000

The solution can be verified by substituting the results into the original equation set
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— 3(3)-0.1(25)-02(7) =785
- 0.1(33) +7(-25) -03(7) =-193
- 03@3) -02(25) +10(7) =714

Example (2.3): Using Gaussian elimination method with pivoting, solve the following system of

linear equations:
X1 tX2+x3—x4=2
4x1+4x2+x3+x4=11
X]—X2—X3+2x4=0

2x1+tx2t2x3-2x4=2

Solution:
X1 tX2+X3-x4=2 Eq. 1
4x1+4x2+x3+x4=11 Eq.2
X1—X2—X3+2x4=0 Eq.3
2x1+x2+2x3-2x%x4=2 Eq. 4

In the first step, eliminate x1 terms from second, third, and fourth equations of the set of
equations to obtain:

X1+ X2t X3 — x4=2

Eq.2+(-4/1)*Eq. 1 — —3x3 +5x4=3 Eq. 5
Eq.3+(-1/1)*Eq.1 — —2X2— 2x3 + 3x4 = -2 Eq. 6
Eq.4+(-2/1)*Eq. 1 — X2 =2 Eq.7
Exchanging columns in the above equations by putting the variables in the order x1, x4, x3 and x; as

X1 — X4 T X3+ X2 =2 Eq. 8
+ 5x4 —3x3 =3 Eq. 9

+3x4 —2Xx3 — 2x2 = -2 Eq. 10

—xy=-2 Eq. 11

In the second step, eliminate x4 term in third equation using (Eq. 9):
X1 — X4 + X3+ x2 =2
+ 5x4 —3x3 =3
Eq. 10+ (-3/5) *Eq.9 — — (1/5)x3 — 2x2=—-19/5 Eq. 12
X3 =-2
Now, by the process of back substitution, we have
- X2 =12 x3=-1, x4=0 and x1 = 1.

2 2
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2.2.2. Gauss-Jordan Method

Gauss-Jordan method is an extension of the Gauss elimination method. The major difference is
that when an unknown is eliminated in the Gauss-Jordan method, it is eliminated from all other
equations rather than just the subsequent ones. In addition, all rows are normalized by dividing them
by their pivot elements. The set of equations Ax = b is reduced to a diagonal set Ix = b', where I is
an identity (also called unit) matrix. Thus, the elimination step results in an identity matrix rather than
a triangular matrix. The identity matrix (sometimes called a unit matrix) of size n is the n x n square
matrix with ones on the main diagonal and zeros elsewhere. Therefore, the diagonal set Ix = b' is

equivalent to x = b', i.e., it is not necessary to employ back substitution to obtain the solution.

Example (2.4): Carrying six significant figures during the computation, use the Gauss-Jordan

technique to solve the same system as in Example (2.2):
3x —0.1y-0.2z="7.385
0.1x+7y-03z=-193
03x—-02y+10z=714

Solution: First, express the coefficients and the right-hand side as an augmented matrix (which is

a matrix obtained by adding the columns of two given matrices).

3 -01 -0z : 7.85
0.1 7 -03 : =193
03 0.2 10 : 71.4

Then, normalize the first row by dividing it by the pivot element, 3, to yield

1 —0.0333333 —0.066667 : 2.61667
0.1 7 -0.3 : —19.3
0.3 -0.2 10 : 71.4

The x: term can be eliminated from the second row by subtracting 0.1 times the first row from the
second row. Similarly, subtracting 0.3 times the first row from the third row will eliminate the x:

term from the third row:

1 —0.0333333 —0.066667 : 2.61667
0 7.00333 —0.293333 : —19.5617
0 —0.190000 10.0200 : 70.6150

Next, normalize the second row by dividing it by 7.00333:

1 —-0.0333333 —0.066667 : 2.61667
0 1 —0.0418848 : —2.79320
0 —0.190000 10.0200 : 70.6150
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Reduction of the x; terms from the first and third equations gives

1 0 —0.0680629 : 2.52356

0 1 -0.0418848 : —2.79320

0 0 10.01200 : 70.0843
The third row is then normalized by dividing it by 10.0120:

1 0 —0.0680629 : 2.52356

0 1 -0.0418848 : —2.79320

0 O 1 : 7.0000
Finally, the x3 terms can be reduced from the first and the second equations to give

1 0 0 3.00000

0O 1 0 : =250000

o o0 1 - 7.00000

Thus, the coefficient matrix has been transformed to the identity matrix, and the solution is obtained

in the right-hand-side vector. Notice that no back substitution was required to obtain the solution.

Example (2.5): Solve the following system of equations by Gauss-Jordan method.

x+3y+2z=17
x+2y+3z=16
2x —y+4z=13
Solution:
1 3 2 17
1 2 3 : 16
2 -1 4 13
Eliminate x term from the second (Row 2 + (—1) Row 1) and third (Row 3 + (—2) Row 1) rows as
1 3 2 17
o -1 1 -1
o -7 0 -21
Next, normalize the second row by dividing it by —1:
1 3 2 : 17
0 1 -1 1
0o -7 0 =21

Eliminate y term from the first (Row 1 + (—3) Row 2) and third (Row 3 + (7) Row 2) rows as
1 0 5 : 14
o 1 -1 1
o o -7 : -14

Next, normalize the third row by dividing it by —7:

1 0 5 14
[0 1 -1 1

0 0 1 : 2
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Eliminate z term from the first (Row 1 + (=5) Row 3) and second (Row 2 + (1) Row 3) rows as

1 0 0 : 4
o 1 0 : 3
o o 1 : 2
- X =4, y=3, and z=2

Example (2.6): Using the Gauss-Jordan method, solve the following system of equations.

x-2y=-4
-S5y+z=-9
4x - 3z=-10

Solution: Expressing the coefficients and the right-hand side as an augmented matrix

1 =2 0 : —4
0 =5 1 : -9
4 0 -3 : =10
Eliminate x term from the third row as (Row 3 + (—4) Row 1)
1 =2 0 =4
0 =5 1 : \NONY9
0 8 -3 6
Next, normalize the second row by dividing it by —5:
1 =2 0 =4
0 1 -1/5 : 9/5
0 8 NS : 6
Eliminate y term from the first (Row 1 + (2) Row 2) and third (Row 3 + (—8) Row 2) rows as
1 0 -=2/5 —2/5
[0 1 -1/5 9/5 ]
o o -7/5 : -—42/5
Next, normalize the third row by dividing it by —7/5:
1 0 -2/5 : =2/5
o 1 -1/5 : 9/5 ]
0 0 1 : 6
Eliminate z term from the first (Row 1 + (2/5) Row 3) and second (Row 2 + (1/5) Row 3) rows as
1 0 0 : 2
o 1 0 : 3
0 0 1 : 6
- X =2, y=3, and z=6

2.3. Iterative Methods for Solving System of Linear Algebraic Equations
Iterative or indirect methods, start with a guess of the solution x, and then repeatedly refine the

solution until a certain convergence criterion is reached. Iterative methods are generally less efficient
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than direct methods due to the large number of operations or iterations required. The initial guess
affects only the number of iterations that are required for convergence. In this section, we will present

two iterative methods; Jacobi’s Iteration Method and Gauss-Seidel Iteration Method.

2.3.1. Jacobi’s Iteration Method

This method is also known as the method of simultaneous displacements. Consider the system

of linear equations

ai1 X1 + Q12 X3 +a13x3 = by
a21 x1 + a22 xz + a23 x3 = bz (213)
A31 X1 + A3z X; +azzxz = b3

Here, we assume that the coefficients a1, az2 and ass are the largest coefficients in the respective

equations so that
lai1l > lagz| + lags]
lazal > lazs| + |azsl (2.14)

lass| > |as;| + las;|

Jacobi’s iteration method is applicable only if the conditions given in Eq. (2.14) are satisfied.

Now, using Eq. (2.13) we can write

x; =—(by — a1 x, — a3 x3)
aiq
1
Xy, =—(by— az; x1 — dy3 X3) (2.15)
az;
x3 =— (b3 —az; x; — az; x7)
sz

Let the initial approximations for x4, x,, and x5 be abbreviated as xio), xgo), and xéo) , respectively.

The following iterations are then carried out.

Iteration 1: The first improvements are found as

1
1 _ _ 0 _ (0)
X, = o (bl ayp X5 A3 X3 )
1
1 0 0
az2

1
1 0 0
xé ) = _33 (b3 — dzq xi ) — a3p xé ))
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Iteration 2: The second improvements are obtained as

1
2 1 1
x:E ) :_(bl _alzxg ) - a13 xg ))
ai
1
2 1 1
s,
1
2 _ _ v _ ¢H)
X3 = . (b3 azp Xg a3; X5 )

The above iteration procedure for x1, x;, and x3 1s continued until the relative error between two
consecutive iterations falls below a pre-assigned degree of accuracy. Convergence error can be

estimated using the following relation

NOBNGS

Error % = X 100 (2.18)

_ 1
N
for all 7, where (j) and (j — 1) are the present and previous iterations, respectively. In Jacobi’s method,

(©) _

it is a general practice to assume that x; = x§0) = 0. The method can be extended to a

system of n linear simultaneous equations in n unknowns.

Example (2.7): Solve the following equations by Jacobi’s method with seven iterations.
I15x +3y —-2z=285
2x + 10y +z=51
Xx—2y+8z=5

Solution: In the above equations:
layi| > lagzl + lagsl - [15] > [3] + [-2]
lazz| > lazi| +lazs| - [10] > [2] +[1]
lass| > lazi| +las,| - (8] > [1] +[-2]

Therefore, Jacobi’s method is applicable. We rewrite the given equations as follows:
1
xM = = (85 -3y +22®)
y® = % (51— 2x© — z()

7 = % (5 —x©@ + 2 y©)

Let the initial approximations be x(® = y(® =z(0) =g
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Iteration 1: Now x(® =0, y©® =0, and z® =0

n_1 — 17
x) == (85) = 2

v _1 -
Y =1 (51 = 10

n_1 —
z —8(5)—

w|un

Iteration 2: Now xV = 1—37 y = %, and z@ zg

x<2>_%(\ 5-3 (3 )+2())_473
(51 2 (2)- (g)) = 3.904
2@ = ;( - (& )+2(51))_ 1.192

Result for subsequent iterations are presented in the following table:

(2) -1
10

Iteration
Variable
0 1 2 3 4 5 6 7
0 17/3 473 5.045 4,994 5.002 5.0 5.0
y 0 51/10 3.904 4.035 3.99 4.001 4.0 4.0
z 0 5/8 1.192 1.010 1.003 0.998 1.0 1.0

2.3.2. Gauss-Seidel Iteration Method
The Gauss-Seidel method is an additional iterative method for solving system of linear
algebraic equations. It is an improved version of Jacobi’s method and it also known as the method of
successive approximations. Consider the system of linear simultaneous equations
aj1 X1 + Az Xy +azxs =by
Ay1 X1 + Ay X; +ay3x3 = by (2.19)

a31 X1 + A3z X; +az3x3 = by

The Gauss-Seidel method is applicable if the coefficients az1, a2z and ass are the largest

coefficients in the respective equations so that

laiil > lagz| + lagsl
lazz| > lazg| + lazsl| (2.20)

lass| > |as;| + las;]

Now, using Eq. (2.19) we can write
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x; =—(by — a1 x, — ay3 x3)

aiq

1

X, =—(by— az; x; — az3 x3) (2.21)

az;
x3 =— (b3 —az; x; — azy x;)

aszs

Let the initial approximations for x4, x,, and x5 be abbreviated as xio), xgo), and xéo) , respectively.

The following iterations are then carried out.

Iteration 1: The first improvements are found as

1
1 0 0
x:E ) :_(bl _alzxg ) - a13 xg ))
a11
1
1 1 0
xé ) = _(bz_ a21 x:E ) - a23 xg )) (222)
az2
1
1 _ _ (1) _ (1)
X3 = " (b3 azp X; a3; X5 )

Iteration 2: The second improvements are obtained as

1
2 1 1
xf ) _—(bl —alzxg ) aq3 xg ))
a1
1
2 2 1
Xé ) — _(bz_ a21 X:E ) - a23 Xg )) (223)
az2
1
2 2 2
Xé ) —_(bs — a3 Xf ) —aszx§ ))
as3

Since the most recent approximations of the variables are used while proceeding to the next
step, the convergence of the Gauss-Seidel method is twice as fast as in Jacobi’s method. The above
iteration process is continued until the values of x1, x2, and x3 are obtained to a pre-assigned or

desired degree of accuracy.

In general, the initial approximations are assumed as xio) = xéo) = x§0) = 0 . Like the

Jacobi’s method, Gauss-Seidel method can also be extended to »n linear simultaneous algebraic

equations in n unknowns.

Example (2.8): Solve the following equations by Gauss-Seidel method with three iterations.
I15x +3y-2z=285
2x + 10y +z=51
X—2y+8z=5
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Solution: In the above equations:

laiil > lags| +lagsl — [15] > 3]+ [-2]
lazz| > lagg| +laxzl — [10] > 2] + |1]
lass| > l|as;| +|asx| — (8] > [1] +|-2]

Therefore, Gauss-Seidel method is applicable. We rewrite the given equations as follows:
1
x@ = = (85 -3y +22®)
1
y(l) — B (51 -2 x(o) — Z(O))

7 = % (5 —x©@ + 2 y©®)
Let the initial approximations be x(® = y(©® =z =g
Iteration 1: Nowx® =0, y@® =0, and z® =0
-1 — (0) ) = 8
x —15(85 3yW+ 2z )—15
y® == (51-220 - 2®) = = (51-2 2 - 0) = 396667
10 10 15

1 1 85
2 == (5-xW+2yW) == (5 "2 2(3.96667)) = 0.908334

Iteration 2: Now x = f—i y) = 396667, and zM =0.908334
1 1
x() = E(85 —3yMW4+22,M) = E(85 —3(3.96667) + 2 (0.908334) ) = 4.994443
y@ = % (51—2x® —z) = % (51 — 2 (4.994443) — 0.908334) = 4.010278

z® =2 (5 —x@ + 2y®) == (5 - (4994443) + 2(4.010278)) = 1.003264

Iteration 3: Now x@® =4994443, y®@) =4.010278, and z® = 1.003264
1 1
xG3) = E(85 —3y@+22®) = E(85 —3(4.010278) + 2 (1.003264)) = 5.0
@=L (51-2x® ;@)= L (51— _ —
y® == (51-2x® - 2¥) = = (51 -2(5.0) — 1.003264) = 4.0
1 1
23 == (5-x® +2y®) == (5-(50) +2(4.0)) = 1.0

It is proved that with three iterations, the convergence of the Gauss-Seidel method is twice as

fast as in Jacobi’s method, which required six iterations to reach convergence.
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Exercise (2.1):

a) Using the methods of (a) Gauss elimination and (b) Gauss-Jordan, solve the following system of

equations.
2x+2y+4z=18
x+3y+2z=13
3x+y+3z=14
b) Using partial pivoting, solve the following system of equations by (a) Gauss elimination method
and (b) Gauss-Jordan method.
y+2z=5
x+2y+4z=11
S3x+y-5z=-12
¢) Using (a) Gauss elimination method and (b) Gauss-Jordan method, solve the following system of
equations.
2x+ty+z=4
x—-y+2z=2
2x+2y—z=3
d) Solve the system of equations below using the following methods: (a) Gauss elimination, (b)

Gauss-Jordan, (c) Jacobi’s Iteration, and (d) Gauss-Seidel.

Sx+2y+z=12
x+4y+2z=15
x+2y+5z2=20

e) Using the methods of (a) Jacobi’s Iteration and (b) Gauss-Seidel, solve the following system of

equations.
S5x-2y+z=4
Xx+4y—-2z=3
X+2y+4z=17

f) Solve the following system of equations using (a) Jacobi’s Iteration method and (b) Gauss-Seidel
Iteration method.
I0x+y+z=12
2x+10y+z=13
2x+2y+10z=14
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Chapter Three - Curve Fitting

3.1. Introduction

Data are often given for discrete values along a continuum. However, you may require estimates
at points between the discrete values. The present chapter describes techniques to fit curves to such
data to obtain intermediate estimates. Furthermore, you may require a simplified version of a
complicated function. One way to do this is to compute values of the function at a number of discrete
values along the range of interest. Then, a simpler function may be derived to fi t these values. Both
of these applications are known as curve fitting.

There are two general approaches for curve fitting that are distinguished from each other

based on the amount of error associated with these data.

¢ First, where these data exhibit a significant degree of error or “noise,” the strategy is to derive a
single curve that represents the general trend of these data. One method of this approach is called

least-squares regression (Fig. 3.1a).

e Second, where these data are known to be very precise, the basic approach is to fit a curve or a
series of curves that pass directly through each of the points. Such data usually originate from
tables. Examples are values for the density of water or for the heat capacity of gases as a function
of temperature. The estimation of values between well-known discrete points is called

interpolation (Fig. 3.1b and c).

f(x) f(x) f(x)

(([) (b) X (() X

Fig. 3.1 Three attempts to fit a “best” curve through five data points. (a) Least-squares regression,
(b) linear interpolation, and (c) curvilinear interpolation.

3.2. Linear Regression
Where substantial error is associated with data, polynomial interpolation is inappropriate and
may yield unsatisfactory results when used to predict intermediate values. Experimental data are often

of this type. A more appropriate strategy for such cases is to derive an approximating function that
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fits the shape or general trend of the data without necessarily matching the individual points. The
simplest example of a least-squares approximation is fitting a straight line to a set of paired

observations: (X1, y1), (X2, y2), . . . , (Xn, yn). The mathematical expression for the straight line is;
Yy =a9 +a;x +e 3.1

where a, and a, are coefficients representing the intercept and the slope, respectively, and e is the
error, or residual, between the true value of y and the estimated value from the above linear

mathematical expression, which can be represented by rearranging as (Fig. 3.2);
e=y—ay— a4 X (3.2)

One strategy for fitting a “best” line through the data would be to minimize the sum of the

residual errors (e) for all the available data, as in

n n
Z, e = Z (i — ap — ay x;) (3.3)
i=1 i=1

where n 1s total number of points. However, this is an inadequate criterion, as illustrated by Fig. 3.3a,
which depicts the fit of a straight line to two points. Obviously, the best fit is the line connecting the
points. However, any straight line passing through the midpoint of the connecting line (except a
vertical line) results in a minimum value. Therefore, another logical criterion might be to minimize

the sum of the absolute values of the discrepancies, as in

n n
D del= D Iyi= ao- axl (.4)
=1 =1

Fig. 3.3b demonstrates why this criterion is also. For the four points shown, any straight line
falling within the dashed lines will minimize the sum of the absolute values. Thus, this criterion also
does not yield a unique best fit. A third strategy for fitting a best line is the minimax criterion. In
this technique, the line is chosen that minimizes the maximum distance that an individual point falls
from the line. As depicted in Fig. 3.3¢, this strategy is inappropriate for regression because it gives
excessive influence to an outlier, that is, a single point with a large error.

A strategy that overcomes the shortcomings of the aforementioned approaches is to minimize
the sum of the squares of the residuals between the measured y and the y calculated with the linear
model. This criterion has a number of advantages, including the fact that it yields a unique line for a
given set of data.

n n 5 n
Sy = zi=1ei2 = Zi=1(yimeasured ~ Yimode) = Zi=1(yi — ag— a x;)° (3.5)

To determine values for ag and ai, S, is differentiated with respect to each coefficient.
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as, . :
Pro—2) G- - ax) (3.6)

0 i=1
as n
= 2 Z (i = a0 — a1 %) x;] G.7)

1 i=1

Now, setting these derivatives equal to zero will result in a minimum value of §,. Then, the final

equations for ap and a; can be expressed as;

- n Z?:l xi yi - Z?:l xi ?:1 yi
a, = —— — > (3.8)
n Zi=1xi - (Zi=1 xi)

g = y — 1% (3.9)
where ¥ and X are the mean values of y and x, respectively. Therefore, the least-squares fit line is

Yy =0a t a1 x (3.10)

Measurement

Ay + ax;

.\‘, X

Fig. 3.2 The residual in linear regression represents the vertical distance between a data point and
the straight regression line.

" L
----‘

&
-
-.-"-o’

¢
v
o‘. @ Outlier

(a) X (b) b ¢ (¢) X

Fig. 3.3 Examples of some criteria for “best fit” that are inadequate for regression: (a) minimizes
the sum of the residuals, (b) minimizes the sum of the absolute values of the residuals, and (c)
minimizes the maximum error of any individual point.
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Example (3.1): Fit a straight line to the x and y values presented in the following table.

1 2 3 4 5 6 7
0.5 2.5 2.0 4.0 3.5 6.0 55
Solution:
The following quantities can be computed:
n=7, ¥x; = 28, Syi= 24, Y x;y; = 119.5, Y x? = 140,
i=2-1 7 =2 = 3428571
7 7
_7(119.5)—28(24)
1= S Ga0)s 0z 0.8392857

g =3.428571 - 0.8392857(4) = 0.07142857

Therefore, the least-squares fit line is;

Example (3.2): The experimental data for the force (F) and velocity (V) for an object suspended in a

wind tunnel are given in the table below. Fit a straight line to the data using the least-square regression

y = 0.07142857 + 0.8392857 x

method and then use it to calculate the force when the velocity is 55 m/s.

Velocity, V(m/s) | 10 | 20 | 30 | 40 50 60 | 70 80
Force, F (N) 24 68 378 552 608 1218 831 1452
Solution:
From the data presented, the following quantities can be calculated:
n Xi Yi (xi)? Xi Yi
1 10 24 100 240
2 20 68 400 1360
3 30 378 900 11340
4 40 552 1600 22080
5 50 608 2500 30400
6 60 1218 3600 73080
7 70 831 4900 58170
8 80 1452 6400 116160
> 360 5131 20400 312830
n==_, ¥xi = 360, Yyi= 5131, ¥ x; y; = 312830, ¥ x? = 20400
f:?:%, y=%=641.375
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__8(312830)—360(5131) _

W= 8(20400)— (360)2 =19.5083

ag = 641.375-(19.5083 x 45) = -236.5

Then the equation for the straight line is y=ap+arx=-236.5+19.5083 x
Or, F=a+aV=-2365+195083 V
Then, the predicted value of force at a velocity of 55 m/s is

F=ap+aiV=-236.5+19.5083 V=-236.5+19.5083 (55) =836.4583 N

Example (3.2):
1500 ple (3.2) o
y =- 236.5 + 19.508x ,
O , 4
1100 ,
7
7 " O
700 %
o” ©
O 7
300 P
Vd
g 7z 6
-100
0 20 40 60 80 100

Exercise (3.1):
a) Fit a straight line for the data points (-1, 10), (0, 9), (1, 7), (2, 5), (3, 4), (4, 3), (5, 0), and (6, -1).
b) Using the following data (-2, 1), (-1, 2), (0, 3), (1, 3), and (2, 4), find the least square line.

¢) Using the least-square regression method, fit a straight line for the following data points (-4, 1.2),
(-2,2.8), (0, 6.2), (2, 7.8), and (4, 13.2).

d) The daily income for a worker is presented in the table below with the corresponding daily food
expenditure. Using the least squares regression method, fit a line to the data presented considering

the income as the independent variable and food expenditure as the dependent variable.

Daily income (USD) 35 50 22 40 16 30 25
Daily food expense (USD) 9 15 6 11 5 8 9

¢) The monthly income in hundreds of dollars with the corresponding monthly internet bills in dollars
for a random sample of 10 households is presented in the table below. Fit a line to the data using
the least squares regression method considering the income as the independent variable and

internet bill as the dependent variable.
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Monthly income * 100 (USD) 16 45 35 31 30 14 40 15 36 40
Monthly internet bill (USD) 36 140 171 70 94 25 159 41 78 98

3.3. Interpolation

You will frequently have occasion to estimate intermediate values between precise data points.
Interpolation is used in such occasions as an alternative curve-fitting technique and the most common
method used for this purpose is polynomial interpolation. Recall that the general formula for an nth-

order polynomial is
fxX)=as+a;x+a,x*+ -+ a, x" (3.11)

Polynomial interpolation consists of determining the unique nth-order polynomial that passes
the n + 1 data points. This polynomial then provides a formula to compute the intermediate values.
Although there is one and only one nth-order polynomial that fits n + 1 points, there are a variety
of mathematical formats in which this polynomial can be expressed. In this chapter, we will describe

two alternatives: the Newton and the Lagrange polynomials.

(a) (b) (c)

Fig. 3.4 Examples of interpolating polynomials: (a) first-order (linear) connecting two points, (b)
second order (quadratic or parabolic) connecting three points, and (¢) third-order (cubic) connecting
four points.

3.3.1. Newton’s Divided-Difference Interpolating Polynomials

Newton’s divided-difference interpolating polynomial is among the most popular and useful
forms. Before presenting the general equation, we will introduce the first- and second-order versions

because of their simple visual interpretation.
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3.3.1.1. Linear Interpolation

The simplest form of interpolation is to connect two data points with a straight line. This

technique, called linear interpolation, is illustrated graphically in Fig. 3.5. Using similar triangles,

f1(x) = f(x0) _ f(xa) — fCxo)

3.12
X — X X1 — Xo 3.12)
which can be rearranged to yield;
fx) — f(xo)
@) = fxo) + = — == (x = xo) (3.13)

which is a linear-interpolation formula. The notation fi(x) designates that this is a first order
interpolating polynomial. Notice that the term [f(xq) — f(x0)]/(x1 — X¢) is a finite-divided-
difference approximation of the first derivative besides representing the slope of the line connecting
the points. In general, the smaller the interval between the data points, the better the
approximation. This is because, as the interval decreases, a continuous function will be better

approximated by a straight line. This characteristic is demonstrated in the following example.

f(x)

f(xy))

Si(0)

S (xp)

L
-

Fig. 3.5 Graphical depiction of linear interpolation. The shaded areas indicate the similar triangles
used to derive the linear-interpolation formula

Example (3.3): Estimate the natural logarithm of 2 using linear interpolation. First, perform the

computation by interpolating between In 1 =0 and In 6 = 1.791759. Then, repeat the procedure, but
use a smaller interval from In 1 to In 4 = 1.386294. Note that the true value of In 2is 0.6931472.
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Solution:

Using linear interpolation for In 2 from xo = 1 to x; = 6 will give:

x) — f(x 1.791759 - 0
£1(2) = f(xy) + M(x —x,) =0+ ————(2—-1) = 0.3583519
1— Xo 6—1
: 0.3583519— 0.6931472 _
which represents an error of 6931472 x 100 = 48.3% .

Using the smaller interval from xo = 1 to x; =4 yields

f(x1) — f(x0) 1.386294 — 0
r——

f1(2) = f(xo) + (x —x0) = 0+ ————(2 — 1) = 0.4620981

1

Thus, using the smaller interval reduces the percent relative error to 33.3%.

Exercise (3.2): Estimate the common logarithm of 10 using linear interpolation

a) Interpolate between log 8 = 0.9030900 and log 12 =1.0791812.
b) Interpolate between log 9 = 0.9542425 and log 11 =1.0413927.

For each of the interpolations, compute the percent error based on the true value (log 10 = 1).

3.3.1.2. Newton's Second-Order Polynomial (Quadratic Interpolation)

The error in previous example resulted from approximating a curve with a straight line.
Consequently, a strategy for improving the estimate is to introduce some curvature into the line
connecting the points. If three data points are available, this can be accomplished with a second-order
polynomial (also called a quadratic polynomial or a parabola). A particularly convenient form for this

purpose is
f2(x) = by + by (x —x0) + by (x — x0) (x — x1) (3.14)

A simple procedure can be used to determine the values of the coefficients. For (bo), the above

equation can be used with x = xp to compute

by = f(x0) (3.15)
For (b1), equation (3.15) for (bo) can be substituted into equation (3.14), which can be evaluated
at x = x; to calculate

_ [ —f@x)

b
1
X1 — Xp

(3.16)

Finally for (b2), equations (3.15) and (3.16) can be substituted into equation (3.14), which can

be evaluated at x = x> and solved (after some algebraic manipulations) to compute
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[OR) = ) fla) = f(xo)
X2 — X1 X1 — Xo (3.17)

b2:

Notice that, as was the case with linear interpolation, b still represents the slope of the line
connecting points xo and xi. Thus, the first two terms of equation (3.14) are equivalent to linear
interpolation from xo to xi, as specified previously in equation (3.13). The last term,

b, (x — xy)(x — x;), introduces the second-order curvature into the formula.

Example (3.4): Fit a second-order Newton's polynomial to the three points used in Example (3.3)

and use it to evaluate In 2. Note that the true value of In 2 is 0.6931472.
X0 =1 fx0)=0
x1=4 fix1) = 1386294
X2=6 fixz) =1.791759

Solution:
bo = f(x0) =0
- 1.386294 — 0
b, = [0) = J (%) _ = 0.4620981

X1 — X 4—-1

[O) —f(x)  fa) —f(x%) 1.791759 — 1.386294
r— o — g 3— —0.4620981

b, = = = —0.0518731
: X2 —Xo 6—1

f2(x) = by + by (x — x0) + by (x — x0)(x — x1)
= 0+ 0.4620981(x — 1) — 0.0518731(x — 1)(x — 4)

At x =2 we have £,(2) = 0.4620981(2 — 1) — 0.0518731(2 — 1)(2 — 4) = 0.5658444

0.5658444— 0.6931472

which represents a relative error of x 100 = 18.4% .
0.6931472

Thus, the curvature introduced by the quadratic formula improves the interpolation compared with

the result obtained using straight lines.

Exercise (3.3): Fit a second order Newton's interpolating polynomial to estimate log 10 using the

following data from exercise (3.2):
X0 =8 f(x0) = 0.9030900
X1 =9 fx1) = 0.9542425
xx=11  fixz)=1.0413927.
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3.3.1.3. General Form of Newton's Interpolating Polynomials

The preceding analysis can be generalized to fit an nth-order polynomial to n + 1 data points.

The nth-order polynomial is

fo(x) = by + by (x —xg) + -+ by, (x —x0) (x —x1) oo (X —%xp_1) (3.18)

As was done previously with the linear and quadratic interpolations, data points can be used to
evaluate the coefficients bo, by, ... , by. For an nth-order polynomial, n + 1 data points are required:

[x0, f(x0)], [X1, fix1)], ..., [Xn, fixn)]. These data points and the following equations are used to evaluate

the coefficients:

bo = f(x0) (3.19)
by = flx1, %] (3.20)
by = flx2, %1, xo] (3.21)
b, = flxn Xn_1, - » X1, %ol (3.22)

where the bracketed function evaluations are finite divided differences. For example, the first finite
divided difference is represented generally as

] _ flx) — f(xj)

o 3.23
o 5l = = — (3.23)

The second finite divided difference, which represents the difference of two first divided

differences, is expressed generally as

_ [l 5] = flag %

flxi %, x p— (3.24)
Similarly, the nth finite divided difference is
Xn» Xn—1»- > X1) — [ Xn-1, Xn—2, .. ,X
f[xn: Xpiy e X1, xo] — f[ n n—1 1] f[ n—-1 *n-2 0] (3.25)
Xn — Xo

These differences can be used to evaluate the coefficients in equations (3.19) through (3.22), which
can then be substituted into equation (3.18) to yield the interpolating polynomial, which is called
Newton’s divided-difference interpolating polynomial.
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fa(x) = f(x0) + (x — x0)f [x1, x0] + (x — x0)(x — x1)f [x2, %1, x0] + -

(3.26)
+ (x —x0) (x —x1) oo (x — X)) f n, X1, o) X0]

It should be noted that it is not necessary for the data points used to be equally spaced or that

the abscissa values necessarily be in ascending order, as illustrated in the following example.

Example (3.5): In Example (3.4), data points at xo = 1, x1 =4, and x2 = 6 were used to estimate In 2
with a parabola. Now, adding a fourth point [x3 = 5; f(x3) = 1.609438], estimate In 2 with a third-
order Newton’s interpolating polynomial. Note that the true value of In 2 1s 0.6931472.

Solution: The third-order polynomial, equation (3.18) with n =3, is

f3(x) = by + by (x —x0) + by (x — x0) (x — x1) + b3 (x — x0) (x — x1) (x — x3)
x0=1 S(x0)=0
x1=4 Alx1) =1.386294

x2=6 fixz) =1.791759
x3=5;  fixs)=1.609438

f(xO) =0 = bo
The first divided differences for the problem are
_ () — f(xy)  1.386294 — 0

, = 0.4620981 =b
flx1, %ol X, — %g 2-0 1
fle,) — flx) 1.791759 — 1.386294

, = = =0.2027326
flx2, x4] P 6 — 4
x:) — flx 1.609438 — 1.791759
flxs, x;] = [O) = Jxa) — 0.1823216
x3 - xz 5 - 6

The second divided differences are

flxs, %3] — flxy, %] 0.2027326 — 0.4620981

flx2, x1, x0] = = —0.05187311 =b,

X; — Xg 6—1
X2, %,] — flx,, x 0.1823216 — 0.2027326
flxs, x5, x1] = [lxs, xo] = iz, 2] = = —0.02041100
X3 — X1 5—4

The third divided difference is
flxs, x5, x1] — flx2, %1, Xo) _ —0.02041100 — (—0.05187311)
X3 — Xg - 5-1

= 0.007865529 =bs

flx3, %2, %1, X0] =
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= fa(x) = 0 + 0.4620981 (x — 1) — 0.05187311 (x — 1)(x — 4)
+0.007865529 (x — 1) (x — 4) (x — 6)

Now, we can evaluate f3(x) at x =2 — f3(2) = 0.6287686 ,

10.6287686— 0.6931472|

which represents a relative error of | | X 100 = 9.3% .
i 0.6931472 |

Thus, adding a fourth point improves the interpolation.

Example (3.6): The upward velocity of a rocket is given as a function of time in the table below.

Determine the value of the velocity at t = 16 seconds using third order Newton’s divided diftference

interpolating polynomial method.

t (s) 0 10 15 20 225 30
V (m/s) 0 22704 | 36278 | 51735 | 602.97 | 901.67

Solution:
Procedure 1
Since we want to find the rocket velocity at t = 16 and we are using a third order interpolating
polynomial, we need to choose the four data points that are closest to t = 16 that also bracket t = 16

to evaluate it. The four data points that are selected to be the most appropriate are

ty=10 Ato) =227.04
t1 =15 At)) = 362.78
t, =20 Aty)=517.35
t=22.5 At) = 602.97

V =f3(t) =bo + by (t —tg) + by (t —to)(t —tq) + b3 (£ — o) (£ —1ty) (T — 1)

f(ty) =227.04 =b,
The first divided differences for the problem are
_ f@t) — f(ty) 36278 — 227.04

flew tol = — — o - 27148 =b;
_ f@t) - f(t;) 517.35-36278

flte il = — = =—5—q5 = 30914
_ f) - f(t)) 60297 —517.35

flts ol = = =—555 55 = 34248

The second divided differences are

fltz, t] = fIts, to] 30914 — 27.148
t, —tg B 20 — 10

flts, t1, tol = = 037660 =bh,
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flts ta ] = L Lt5 ti:gtz' tl_ 34’2?;_?;” — 0.44453

The third divided difference is

flts, tz 6] = flts, ¢y, to]  0.44453 — 0.37660
t;3 — to 22.5—-10

flts ta, t1, Gl = = 0.0054344 = by

>V = f3(t) = 227.04 + 27.148 (t — 10) + 0.37660 (t — 10)(t — 15)
+0.0054344 (t — 10) (t — 15) (¢t — 20)

which can be used to evaluate the rocket velocity at t = 16 as
= Viart=16s) = f3(16) = 227.04 + 27.148 (16 — 10) + 0.37660 (16 — 10)(16 — 15) +
0.0054344 (16 — 10) (16 — 15) (16 — 20) =392.06 m/s

Procedure 2

To find the rocket velocity at t = 16, the four data points that were previously selected are

ty =10 Ato) =227.04
t; =15 A1) = 362.78
t, =20 Atz) =517.35
ty=22.5 At3) = 602.97

The following table can be used as an alternative procedure to find the third order Newton’s

divided difference interpolating polynomial.

. ) First divided Second divided Third divided
: ’ differences differences difference
W0 | A)=227.04
= b,
Ity to] = 27.148
= b1
~ _ flta, t1, to)
=15 | flu)=362.78 =0.37660 = b,
B flts, ta, ty, Lol
fltz, t1] = 30.914 = 0.0054344 = b,
- _ flts, ta, t4]
=20 | flt))=517.35 = 0.44453

=225 | fit)=602.97
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Exercise (3.4):

a) Given these data in the table below, calculate f{2.8) using Newton’s interpolating polynomials of

order 1 through 3. Choose the sequence of the points to attain the best possible accuracy.

X 1.6 2 25 32 4 45
£(x) 2 8 14 15 8 2

b) Using the data presented in the table below, evaluate f(6) using Newton’s divided difference
formula with a suitable order.

X 5 7 11 13 21
f(x) 150 392 1452 2366 9702

¢) Calculate f(4) using Newton’s interpolating polynomials of order 1 through 4. Choose your base

points to attain good accuracy.

X 1 2 3 5 7 8
f(x) 3 19 99 291 444

o)}

3.3.2. Lagrange Interpolation Polynomials

The Lagrange interpolating polynomial is simply a reformulation of the Newton polynomial
that avoids the computation of divided differences. It can be represented concisely as

W

fo(x) = ZizoLi(x) fCxp) (3.27)
where
X — X;
Li(x) = Hx — (3.28)
j=0"t
j#i

where || designates the “product of”. For example, the linear version (n = 1) is

fi@) = === flxo) +

.-0

X0

f — ALY (3.29)

and the second-order version (n =2) is
(x —2x1)(x — x3) (x — %) (x — x7)

Fxg) +
xo — x1)(Xo — X3) Jxo) (x1 — x0) (X1 — x5

(x — x0)(x — x1)

(x — x0)(xz — x1) f(x)

f2(x) = ( ) f(xp)

(3.30)
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Note that each term Li(x) will be equal to 1 at x = xi; and equal to O at all other sample points.
Thus, each product Li(x) f(x:) takes on the value of f(x;) at the sample point x;, For more details we

have
f2(x) at x = xg = Lo(xg) = 1,L1(xp) = 0,L,(x0) =0 = f2(x0) = f(x0) + 0+ 0 = f(x)
fo(x)atx = x1 = Lo(x1) = 0,L1(x1) = 1, Ly(x1) =0 - fo(x1) =0+ f(x) +0=f(xq)

f2() at x = x; = Lo(xz) = 0,L1(x3) = 0,L,(x3) =1 - fo(x2) =0+ 0+ f(x3) = f(xy)

Example (3.7): Use a Lagrange interpolating polynomial of the first and second order to evaluate In
2 based on the data given in Example (3.4):

x0=1 fx0)=0
x1 =4 fix1) =1.386294
x2=6 fixz) =1.791759

Solution:

The first-order polynomial at x =2 (us1ng xo=1and x1 = 4)

-4 2—1
———1.386294 = 0.4620981
f(x1) 1—2 0+ 11

f1(2) =

In a similar way, the second-order polynomial is developed as

)= 1) (= 20) (= %) (x — x0) (x — x1)
o e DGO R oo DACO RS ey ey BACS
2-D2-6  (2-1D2-6) 2-1D2 -4
= a0 "t Du—g L3820+ e 1791759
= 0.5658444

As expected, both these results agree with those previously obtained using Newton’s

interpolating polynomial.

Example (3.8): Find a polynomial which passes the points (0, -12), (1, 0), (3, 6), (4, 12) using a

suitable order of Lagrange's interpolation polynomial formula.

Solution:
X0 =0 Sxo)=-12
x1 =1 fix1)) =0
X2=3 fixz) =6
X3 = 4 f(X3) =12

We have n = 4 data points, thus, we should use 3™ order Lagrange's interpolation polynomial (n-1).
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_ (x — x)(x — x3)(x — x3) (x — x0) (x — x2) (x — x3)
Js0) = (o — x1) (30 — 22) (xp — x3) J(xo) + (1 — x0) (g — 22) (g — x3) fa)

(x — x0) (x — x7) (x — x3) (x —x0)(x — x)(x — x3)

(x2 —x0)(x2 — x1)(x — x3) f(x) + (x3 — x0)(x3 — x1)(x3 — x3) f(x3)
_e-DE-3)E-4D (x —0)(x —3)(x—4)
SO =0 Do-n0-9 P T 0 -3 - 9
(x—-0)kx—-Dx-4) (x—0)(x—1(x~—3) r
B-0B-DB-4 (4-04-1DA4-3)
3_8x24+19x—12 3_5x24+4 3_4x2+43
fg(x):x x_-l;2 X (_12)+x _x6+ x6+x 1x2+ x12

() =x3—8x2+19x—12—x3+5x2 —4x+x3—4x?>+3x
The required 3™ order Lagrange's interpolation formula is

fa(x) =x3—7x%>+18x — 12

Exercise (3.5):

a) Find the value of y corresponding to x = 10 using Lagrange interpolating polynomial and the
following data for (x, y): (5, 12), (6, 13), (9, 14), and (11, 16).

b) Repeat problems (a) and (b) in Exercise (3.4) using Lagrange interpolating polynomials.

¢) Repeat problem (c) in Exercise (3.4) using Lagrange polynomials of order 1 through 3.
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Chapter Four - Numerical Integration and Differentiation

4.1. Introduction

Calculus is the mathematics of change. Because engineers must continuously deal with systems
and processes that change, calculus is an essential tool of our profession. Standing at the heart of
calculus are the related mathematical concepts of differentiation and integration. According to the
dictionary definition, to differentiate means “to mark off by differences; distinguish; . . . to perceive
the difference in or between.” Mathematically, the derivative represents the rate of change of a
dependent variable with respect to an independent variable. As depicted in Fig. 4.1, the

mathematical definition of the derivative begins with a difference approximation:

y y y

f(x; + Ax)

N A\.
flx; + Ax)

f(x)

fx)

X; x; + Ax X

Ax Ax
(a) (b) (¢)

Fig. 4.1 The graphical definition of a derivative: as Ax approaches zero in going from (a) to (c), the
difference approximation becomes a derivative.

Ay f(x; +A%) — f(x)
Ax Ax

4.1)

where y and f(x) are alternative representatives for the dependent variable and x is the independent
variable. If Ax is allowed to approach zero, as occurs in moving from Fig. 4.1a to c, the difference
becomes a derivative

dy _ [+ %) — [(x)
T 1m

= 472
dx Ax—0 Ax ( )

where dy/dx [which can also be designated asy " or /' (x1)] is the first derivative of y with respect to
x evaluated at x;. As seen in the visual depiction of Fig. 4.1c, the derivative is the slope of the tangent
to the curve at xi.

The second derivative represents the derivative of the first derivative,
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2
ay_4 (d_y> 4.3)
dx? dx\dx

Thus, the second derivative tells us how fast the slope is changing. It is commonly referred to as the
curvature, because a high value for the second derivative means high curvature.

Finally, partial derivatives are used for functions that depend on more than one variable.
Partial derivatives can be thought of as taking the derivative of the function at a point with all but one
variable held constant. For example, given a function f that depends on both x and y, the partial
derivative of f with respect to x at an arbitrary point (x, y) is defined as

of fx+8x, y) —f(x, y) (4.4)
0x  Ax—>0 Ax

Similarly, the partial derivative of f with respect to y is defined as

of . flx, y+Ay)—f(x, y)
— = lim
dy  Ay-o0 Ay

(4.5)

For further understanding of partial derivatives, recognize that a function that depends on two
variables is a surface rather than a curve. Suppose you are mountain climbing and have access to a
function ( f ) that yields elevation as a function of longitude (the east-west oriented x-axis) and
latitude (the north-south oriented y-axis). If you stop at a particular point, (Xo, yo), the slope to the
east would be Jf(xo, yo)/0x and the slope to the north would be Jf(xo, yo)/0y.

The inverse process to differentiation in calculus is integration. According to the definition of

93,
>

dictionary, “fo integrate” means “fo bring parts together into a whole”; “to unite”; or “to indicate

the total amount”. Mathematically, integration is represented by

b
sz f(x)dx (4.6)

which stands for the integral of the function f{(x) with respect to the independent variable x, evaluated
between the limits x = a to x =b. The function f(x) in Eq. (4.6) is referred to as the integrand (i.e.,
the function that is to be integrated).

The “meaning” of Eq. (4.6) is the total value, or summation, of f(x) dx over the range x =a
fo b. In fact, the symbol / is actually a stylized capital S that is intended to signify the close
connection between integration and summation. Fig. 4.2 represents a graphical demonstration of
definite integration. For functions lying above the x axis, the integral expressed by Eq. (4.6)

corresponds to the area under the curve of f{x) between x =a and b.
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S0

a

Fig. 4.2 Graphical representation of the integral of f(x) between the limits x = ato b. The integral
is equivalent to the area under the curve.

The differentiation and integration are closely related processes that are, in fact, inversely
related (Fig. 4.3). For example, if we are given a function y(t) that specifies an object’s position as a

Sfunction of time, differentiation provides a means to determine its velocity, as in (Fig. 4.3a).
v(®) =5 y(©
dt

Conversely, if we are provided with velocity as a function of time, integration can be used to

determine its position (Fig. 4.3b),
t
y(t) = [v(®) dt

400

200

0
v y
- 400 |-
4 — e
I® 200 |-
2 -
0 | | | | | | 0 | | | | |
0 4 8 12 ¢ 0 4 8 12 ¢

(a) (b)
Fig. 4.3 The contrast between (a) differentiation and (b) integration.
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4.2. Numerical Integration: Newton-Cotes Integration Formulas
The calculation of integrals is important in engineering applications. A number of examples
relate directly to the idea of the integral as the area under a curve are presented in Fig. 4.4. The most

common approaches for numerical integration is the Newton-Cotes formulas.

/
INACAALTANAAAMANAAAAANA AN P

e

-

(a) (b) (c)

Fig. 4.4 Examples of how integration is used to evaluate areas in engineering applications. (a) A
surveyor might need to know the area of a field bounded by a meandering stream and two roads. (b)
A water-resource engineer might need to know the cross-sectional area of a river. (¢) A structural
engineer might need to determine the net force due to a non-uniform wind blowing against the side
of a skyscraper.

The Newton-Cotes Integration Formulas are based on the strategy of replacing a complicated

function or tabulated data with an approximating function that is easy to integrate:

b r

b
I = Jlr flx) dx = J £ (x) dx (4.7)

a a

where f,, (x) = a polynomial of the form
fm@ =ay+ax+-+ a1 x"1 + a, x" (4.8)

where n is the order of the polynomial. For example, in Fig. 4.5a, a first-order polynomial (a straight
line) is used as an approximation. In Fig. 4.5b, a parabola is employed for the same purpose. The
integral can also be approximated using a series of polynomials applied piecewise to the function or
data over segments of constant length. For example, in Fig. 4.5¢, three straight-line segments are used

to approximate the integral. Higher-order polynomials can be utilized for the same purpose.
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f(x) f(x) 11x)

L
=

(a)

Fig. 4.5 The approximation of an integral by the area under (a) a single straight line and (b) a
single parabola. (¢) The approximation of an integral by the area under three straight-line segments.

Closed and open forms of the Newton-Cotes formulas are available. The closed forms are those
where the data points at the beginning and end of the limits of integration are known (Fig. 4.6a). The
open forms have integration limits that extend beyond the range of the data (Fig. 4.6b). In this sense,
they are similar to extrapolation. Open Newton-Cotes formulas are not generally used for definite

integration. This chapter deals with the closed forms of the Newton-Cotes integration formulas.

J(x) S

LS

o 7

a b X a b X

(a) (b)

Fig. 4.6 The difference between (a) closed and (b) open integration formulas.

4.2.1. The Trapezoidal Rule
The trapezoidal rule is the first of the Newton-Cotes closed integration formulas. It

corresponds to the case where the polynomial in Eq. (4.7) is first order:

rb rb

1=J £(x) dx EJ fi (x) dx (4.9)
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Recall from linear interpolation in chapter three - curve fitting, the straight line can be represented as

(x —a) (4.10)

.
A = @ + LD

The area under this straight line is an estimate of the integral of f(x) between the limits a and b:
(b) — f(a)
b—a

b
I = j{ [f(a) + ! (x — a)] dx (4.11)

The result of the integration shown below is called the trapezoidal rule.

f(a) + f(b) (4.12)

I=(b-a) >

Geometrically, the trapezoidal rule is equivalent to approximating the area of the trapezoid
under the straight line connecting f(a) and f(b) in Fig. 4.7. Therefore, the integral estimate can be

represented as
I = width x average height = (b — a) X average height (4.13)

All the Newton-Cotes closed formulas can be expressed in the general format of the above

equation. In fact, they differ only with respect to the formulation of the average height.

f(x)

f(b)

f(a)

/ (; b X

Fig. 4.7 Graphical depiction of the trapezoidal rule.

Example (4.1): Use the trapezoidal rule to numerically integrate
f(x) =02 + 25x — 200x2+ 675x3 — 900x* + 400x°>
from a = 0 to b = 0.8. Evaluate the error and note that the exact value of the integral is 1.640533.
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Solution: The function values
Ata=0 — f(a)=f(0)=02
Atb=08 — f(b)=f(0.8)=0.232
can be substituted into Eq. (4.12) to yield
I=(b—a) LD = (08-0) 2222 = 01728

1.640533—0.1728

620533 X 100 = 89.47%

which represents an error of
Example (4.2): Evaluate the following integral using the trapezoidal rule. Estimate the error and note

that x is in radians and the exact value of the integral is 12.4248.

| = f:/2(6+ 3 cosx) dx

Solution: Using f(x) = 6 + 3 cosx , the function values are
Ata=0 — f@)=f(0)=9

Atb=71/2— fb)=f@/2)=6

I = (b—a)w: (%—o)zﬁz 11.7809

12.4248—-11.7809
12.4248

which represents an error of | | x 100 = 5.18%

4.2.2. The Multiple-Application Trapezoidal Rule

One way to improve the accuracy of the trapezoidal rule is to divide the integration interval
from a to b into a number of segments and apply the method to each segment (Fig. 4.8). The areas of
individual segments can then be added to yield the integral for the entire interval. The resulting
equations are called multiple-application, or composite, integration formulas.

The general format and nomenclature we will use to characterize multiple-application integrals
is shown in Fig. 4.9. There are n + 1 equally spaced base points (xo, X1, X2, . . ., Xa). Consequently,
there are n segments of equal width (h):

b—a
n

h = (4.14)

If a and b are designated as xo and x,, respectively, the total integral can be represented as

1=f ' FG0) dx + f CFOO) dx 4 e+ f " FO) dx (4.15)

Xn-1

Substituting the trapezoidal rule for each integral yields
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R (CORS (CANICARD G WD (CIVED (€ @16
2 2 2
or, grouping terms,
R i n—1 y
=2 |fG) +2 ) fea)+ flx) (4.17)
; i=1 |

fx) flx) f(x) fx)

XX X X X XX X

Xy X X, Xy x X, X3 X X,

(a) (b) (c) (d)

P
"

Fig. 4.8 Demonstration of the multiple-application trapezoidal rule. (a) Two segments, (b) three
segments, (¢) four segments, and (d) five segments.

.

Fig. 4.9 The general format and nomenclature for multiple-application integrals.

or, using Eq. (4.14) to express Eq. (4.17) in the general form of Eq. (4.13),
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Ly [ 2 TG + )
s mn (4.18)

Average height

Because the summation of the coefficients of f(x) in the numerator divided by 2n is equal to 1, the
average height represents a weighted average of the function values. According to Eq. (4.18), the

interior points are given twice the weight of the two end points f(x¢) and f (Xy).

Example (4.3): Use the two-segment trapezoidal rule to estimate the integral of
f(x) =02 + 25x — 200x2+ 675x% — 900x* + 400x°>

from a =0 to b = 0.8. Estimate the error and note that the exact value of the integral is 1.640533.

Solution: Withn=2 (h=(b-a)/2=(0.8-0)/2=0.4). The function values
Atxo=0 — f(x0)=f(0)=02
Atx1=04 >  f(x1)=£(0.4)=2.456
Atx;=08 >  f(x2) =/(0.8)=0.232

can be substituted into Eq. (4.18) to yield

n—1 ooy
= (b —a) [(xo)+2 X5 F(x)+ f(xn)

0.2 +2x (2.456) +0.232 _

= (0.8) = 1.0688

2n 2%X2

: +|1.640533— 1.0688 .
which represents an error of ~—eaomas | X 100 = 34.85%

The results of the previous example, along with three- through ten-segment applications of the

trapezoidal rule, are summarized in the following table.

n h 1 Error %
2 0.4 1.0688 349
3 0.2667 1.3695 16.5
4 02 1.4848 9.5
5 0.16 1.5399 6.1
6 0.1333 1.5703 43
7 0.1143 1.5887 32
8 0.1 1.6008 2.4
9 0.0889 1.6091 1.9
10 0.08 1.615 1.6
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Example (4.4): Evaluate the following integral using multiple-application trapezoidal rule, with n =
2 and 4. Estimate the error in each stage and note that x is in radians and the exact value of the integral

is 12.4248.

I = f:/2(6+ 3 cosx) dx

Solution:

Using f(x) = 6 + 3 cos x , the function values can be evaluated as follows;

Y2

. b— >0 .
(a) Withn=2, h = Ta =z — = % , the function values

X%=0 > [(x0)=f(0)=9
w=75 o fe)=fF)=81213
n=3 - f)=f=6

can be substituted into Eq. (4.18) to yield

N=1 ¢y
I=(b—a) f(xo)+2 Zl=21nf(xl)+f(xn) _ G) 9+2 ><§8>.<12213)+6 — 122689
12.4248— 12.2689
12.4248

which represents an error of | x 100 = 1.25%

Y3

. _ b-a 70 x .
(b) Withn=4, h = —=t=5 the function values

X=0 = f(x0)=f(0)=9
=3 o fe)=f()=87716
=7 o fe)=fF)=81213
x3= 2 o f()=f(5)=7.1481
=7 o f)=fG)=6

can be substituted into Eq. (4.18) to yield

n—1 ¢y
I=(b-a) F(xo)+2 zlzzlnf(xl)+ fO) _ G) 9+2x (8.77164;8).(1:13+7.1481) *6 _ 123861

12.4248-12.3861

o1z | % 100 = 0.31%

which represents an error of

Exercise (4.1):

a) Using the trapezoidal rule with (a) single application and (b) multiple-application, with n =2 and

4, evaluate the following integral. Estimate the error in each stage and note that the exact value of

the integral is 2.5012. f03(1 — e7%X) dx
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b) Evaluate the following integral using (a) single application of the trapezoidal rule and (b) multiple-

application trapezoidal rule, with n = 2 and 4. Estimate the error in each stage and note that x is in

radians and the exact value of the integral is 16.5664. I = fn/2(8 + 4 cosx) dx

0

¢) Using the trapezoidal rule withn =1, 2, 3, and 4, evaluate the following integral. Estimate the error

2
in each stage and note that the exact value of the integral is 8.3333. ) 12 (x + % ) dx

4.2.3. Simpson’s Rules

Aside from applying the trapezoidal rule with finer segmentation, another way to obtain a more
accurate estimate of an integral is to use higher-order polynomials to connect the points. For
example, if there is an extra point midway between f (a) and f (b), the three points can be connected
with a parabola (Fig. 4.10a). If there are two points equally spaced between f (a) and f (b), the four
points can be connected with a third-order polynomial (Fig. 4.10b). The formulas that result from

taking the integrals under these polynomials are called Simpson’s rules.

f(x) f(x)

X ( b) X

Fig. 4.10 (a) Graphical depiction of Simpson’s 1/3 rule: It consists of taking the area under a
parabola connecting three points. (b) Graphical depiction of Simpson’s 3/8 rule: It consists of taking
the area under a cubic (third-order) equation connecting four points.

4.2.3.1. Simpson’s 1/3 Rule

Simpson’s 1/3 rule results when a second-order interpolating polynomial (n = 2) is substituted

into Eq. (4.7):

b "

b
1=J £(x) dx EJ £, (x) dx (4.19)

If a and b are designated as xo and xz and f> (x) is represented by a second-order Lagrange polynomial
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[Eq. (3.30)], the integral becomes

(] o= x)(x — x3) (x — %) (x — x2)

= —Lo l(xo — x1)(xg — x2) J(xo) + (1 — x0) (%1 — x32) fx)

) (r— x0) (4.20)
— Xo)\X — X1
(2 — x0) (2 — x1) [(x2)| dx
After integration and algebraic manipulation, the following formula results:
h
1= 2 [fGx) + 4G + f(x)] (421)

where, for this case, h = (b - a) / 2. This equation is known as Simpson’s 1/3 rule. 1t is the second
Newton-Cotes closed integration formula. The label “1/3” stems from the fact that k is divided by 3

in Eq. (4.21). Simpson’s 1y3 rule can also be expressed using the format of Eq. (4.13):

f(xo) +4f(x) + fx3)
6 (4.22)
Average height

I =(b—a)
width

where a = xo, b = X2, and x; = the point midway between a and b, which is given by (b + a) / 2. Notice
that, according to Eq. (4.22), the middle point is weighted by two-thirds and the two end points by

one-sixth.

Example (4.5): Use Simpson’s 1/3 rule to integrate the following equation from a = 0to b =0.8.

Estimate the error and note that the exact value of the integral is 1.640533.

f(x) =02 + 25x — 200x2+ 675x% — 900x* + 400x°>

Solution: n=2

With xo=a=0 and x2=b=08 — h:b_za = 0'82_0: 04 or x, =222=28+0_04

The function values  x¢=10 -  f(x0)=f(0)=02
xi=04 > f(x1)=£(0.4)=2456
x2=08 — f(x2)=/(0.8)=0232

Therefore, Eq. (4.22) can be used to compute

[ =(b-a) £(x0)+4 f(6x1)+f(x2) = (08-0) 0.2 +4(2.4656) +0232 _ 4 acoacy

1.640533—1.367467

which represents an error of X 100 = 16.64%
1.640533

University of Baghdad — College of Engineering — Mech. Eng. Dept. — 2019/2020 Dr. Wail Sami Sarsam
60


http://cbs.wondershare.com/go.php?pid=5261&m=db

mm Wondershare

Remove Watermark g PDFelement

Numerical Analysis Third Year

4.2.3.2. The Multiple-Application Simpson’s 1/3 Rule

Just as with the trapezoidal rule, Simpson’s rule can be improved by dividing the integration

interval into a number of segments of equal width (Fig. 4.11):

h = (4.23)
n
The total integral can be represented as
X2 ¥4 [*n
1= f(x) dx + | fx)dx+ -+ | f(x) dx (4.24)
Jxo “’xz an—z
Substituting Simpson’s 1/3 rule for the individual integral yields
s th(xo) + 4f(6x1) + f(x3) + th(xz) + 4f(6x3) + f(x4) Ca-
(4.25)
f(n_2) +4f (1) + f(xn)
+ 2h
6
or, combining terms and using Eq. (4.23),
I =(b—a) f(xo) +4 Z?=_11,3,5f(xi) + 2 ;‘l=—22,4,6f(xj) + f(xn)
i S 3n , (4.26)

width

Average height

Notice that, as illustrated in Fig. 4.11, an even number of segments must be utilized to implement
the method. In addition, the coefficients “4” and “2” in Eq. (4.26) might seem strange at first glance.
However, they follow naturally from Simpson’s 1/3 rule. The odd points represent the middle term
for each application and hence carry the weight of 4 from Eq. (21.15). The even points are common

to adjacent applications and hence are counted twice.

fx)

A

7

N

Fig. 4.11 Graphical representation of the multiple application of Simpson’s 1/3 rule. Note that the
method can be employed only if the number of segments is even.
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Example (4.6): Use Simpson’s 1/3 rule with n = 4 to estimate the integral of
f(x)= 02 + 25x — 200x%2+ 675x3 — 900x* + 400x°
from a = 0to b = 0.8. Estimate the error and note that the exact value of the integral is 1.640533.

Solution:

With a=0, b=08, and n=4 —» h:b;“=°'84‘°=0.2

The function values xo=0 -  f(x)=f(0)=02
x1=02 = f(x1)=/(0.2)=1.288
x2=04 >  f(x2)=/(0.8)=2456
x3=06 — f(x3)=/(0.6)=3.464

x4=08 — f(x4)=f(0.8)=0232
Therefore, Eq. (4.26) can be used to compute

f(x)+4 NIy o FOx) + 25727, o £ () + £

I=(b-—-a) = =(0.8 —
0.2 +4(1,288+3.464) +2 (2.456) +0.232 . _ . _
0) 22+ 2(1288+3464) +2(2430) ¥ 0232 _ 4 453467
3xX4
; - |1.640533— 1.623467
which represents an error of X 100 = 1.04%

1.640533

The previous example illustrates that the multiple-application version of Simpson’s 1/3 rule
yields very accurate results. For this reason, it is considered superior to the trapezoidal rule for most
applications. However, as mentioned previously, it is limited to cases where the values are
equispaced. Further, it is limited to situations where there are an even number of segments and an

odd number of points.

Example (4.7): Calculate the total distance travelled in kilometers by a train from the time it starts

moving from rest until it stops after 20 minutes using the data in the following table with Simpson’s

1/3 rule.

Time (t) (minutes) 2 4 6 8 10 12 14 16 18
Velocity (v) (km/hr) | 16 | 288 | 40 | 464|512 |320|176| 8 3.2

Solution:
The train starts moving from rest — at t= 0 (minutes), v= 0 (km/hr)

The train stops at t = 20 (minutes) — at t= 20 (minutes), v =0 (km/hr)
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v :% - ds=vdt - [ds=[v.dt - s= fo(zo/w)hrv.dt

The two points in which the train starts and stops should be added to the given table to estimate the

total distance travelled during 20 minutes from start to stop. Thus;

Time () (minutes) | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20

ti to 11 12 13 t4 ts 16 t7 ts to tio

Velocity (v) (km/hr) | O | 16 | 288 | 40 |464 512 (320|176 8 | 32| 0

vi =f(ti) Vo Vi V2 V3 V4 Vs A V7 Vs Vo V10

f(xo)t+4 Z’il=_11,3,5f(xi) + 22}1;22,4,6 (xj)+ fGen)
3n

s=(b—a)

20—-0 0+4(16+40+51.2+17.6+3.2) + 2 (28.84+46.4+32.0+8)+ 0
= 0 % 21 L2 2 1> = 8.249km

60 3x10

Example (4.8): The dimensions (in km) of a dammed lake were measured from an aerial photograph

with the results below in the figure. Estimate its area using the trapezoidal and Simpson’s 1/3 rules.

0.22

Solution:
The dimensions of the dammed lake can be listed in the table below using n = 8 and including

an end point of xg = 2 km and yg = 0 km

b—-a 2-0

Wehave n=8 and h = :T:0.25km

Length (x) (km) | 0.00 | 025 | 050 | 0.75 | 1.00 | 1.25 | 1.50 | 1.75 | 2.00

Xi X0 X1 X2 X3 X4 X5 X6 X7 X3

Width (y) (km) 022 | 031|043 | 065|068 | 125|125 113 | 0

yi =f(xi) \D, yi y2 y3 \Z ys ¥6 y7 y8

Using the trapezoidal rule with number of segments n = 8
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Xo) +2 XML F(x) + f(x
RPN CORE D Y VACARDACD
2n
022 + 2 x (0314+0.43+0.65+0.68+1.25+1.25+1.13) + 0
=(2)
2x8

= 1.453 km?

Using Simpson’s 1/3 rule withn =8
fxo) + 4 71'1:_11,3,5 flx) + 2 }1:_22,4-,6 f(x]) + f(xn)

3n
022 + 2 x4(0314+065+1.254+1.13)+2(0434+0.68+1.25) + 0
3 X8

I=z(b-a)

(2) x
1.525 km?

Exercise (4.2):

a) Evaluate the integral ff i dx using (a) single application of Simpson’s 1/3 rule and (b) multiple-

application Simpson’s 1/3 rule with n = 6. Estimate the error in each stage and note that the exact

value of the integral is 1.3863.
. . : . 1
b) Use Simpson’s 1/3 Rule with n = 4 to find the approximate value of the integral fo V1—x?% dx .
¢) Using Simpson’s 1/3 rule with (a) single application and (b) multiple-application with n = 4,
evaluate the following integral. Estimate the error in each stage and note that the exact value of
the integral is 2.5012. f03(1 — e %) dx

d) Evaluate the following integral using (a) single application of Simpson’s 1/3 rule and (b) multiple-

application Simpson’s 1/3 rule with n = 4. Estimate the error in each stage and note that x is in

radians and the exact value of the integral is 16.5664. I = f:/2(8 + 4 cosx) dx

4.2.3.3. Simpson’s 3/8 Rule

In a similar manner to the derivation of the trapezoidal and Simpson’s 1/3 rule, a third-order

Lagrange polynomial can be fitted to four points and integrated:

b b
sz f(x)dx Ef fz (x) dx (4.27)

After integration and algebraic manipulation and if a and b are designated as xo and x3 , the

following formula results:
3h
I = ) [f(xo) + 3 f(x1) + 3 f(xz) + fx3) ] (4.28)
where h = (b - a) / 3. This equation is called Simpson’s 3/8 rule because h is multiplied by 3/8. 1t is
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the third Newton-Cotes closed integration formula. The 3/8 rule can also be expressed in the form of
Eq. (4.13):
f(xo) +3 () +3f(x3) + fx3)

8 (4.29)
Average height

I =(b—a)
width

Thus, the two interior points are given weights of three-eighths, whereas the end points are weighted
with one-eighth. Further, this formula is limited to situations where there are an odd number of

segments and an even number of points.

Example (4.9):

(a) Use Simpson’s 3/8 rule to integrate the following equation from a = 0 to b = 0.8. Estimate the
error and note that the exact value of the integral is 1.640533.
f(x) =02+ 25x — 200x2+ 675x3 — 900x* + 400x°

(b) Use it in conjunction with Simpson’s 1/3 rule to integrate the same function for five segments.

Solution:

(a) With n=3, x=a=0 and x3=b=08 — h=""%=22"2= 0.2667

The function values  xo=10 - f(x0)=f(0)=02
x1=02667  —>  f(x1)=£(0.2667) = 1.432724
x2=0.5333 5 f(x2)=f(0.5333)=3.487177
x3=0.8 > f(x3)=f(0.8)=0.232

Therefore, Eq. (4.22) can be used to compute

| = (b — q)Le3 f(xl);3f(x2)+f(x3) — (0.8)22%2 (1.432724-;3.487177) $0232 _ 1 1917
which represents an error of [FX2232= 137} w100 = 7.39%
1.640533

(b) The data needed for a five-segment application (n =2 (Simpson’s 1/3) + 3 (Simpson’s 3/8) = 5)

With, n=5, xo=a=0 and xs=b=08 — h:b;“ - °'85‘°= 0.16

The function values xo=0 -  f(x0)=f(0)=02
x1=0.16 > f(x1)=/(0.16) = 1.296919
x2=032 > f(x2)=/(0.32) = 1.743393
x3 = 0.48 —>  f(x3)=/(0.48)=3.186015
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x4 = 0.64 —  f(x4)=f(0.64)=3.181929
xs=0.8 —  f(x5)=f(0.8)=10.232

The integral (/) for the first two segments (from Xo to x2) is obtained using Simpson’s 1/3 rule:

_ xo) flxo)+4 f(x )+ f(xy) — (032 _ 0) 0.2 +4(1.296919) + 1.743393 — 0.380324

I = (x, o o

The integral (1) for the last three segments (from xz to xs) 1s obtained using Simpson’s 3/8 rule:

L= (xs —x,) f(x2>+3f(x3>+83f(x4)+f(x5) — (08—
1.743393 + 3 (3.186015 + 3.181929) + 0.232

8

0.32) = 1.264754

The total integral is computed by summing the two results:

[ =1+ I, = 03803237 + 1.264754 = 1.645078

1.640533—1.645078

which represents an error of X 100 = 0.28%
1.640533

Example (4.10): Find the area beneath the curve y =1 —sinx and the x-axis fromx=0tox =7

using Simpson’s 3/8 rule. Estimate the error and note that the exact value of the integral is 1.14159

and x in radians.

Solution: With n=3, xo=a=0 and x3=b=71 — h:b;a:nT_O:%
The function values  xo=10 - fxo=f0)=1

x| == > f(x)=f()=013397

0 =2 = f(x2)=f(E)=0.13397

X3=T S fa)=f(m)=1

can be used to compute

[ =(b-a) f(x)+3 f(xl)-;3f(x2)+f(x3) = (1) 143 (0.133978+o.13397) *1_ 110106

1.14159-1.10106

13159 X 100 = 3.55%

which represents an error of

Exercise (4.3):

a) A farmer is planning to plant the palm plantation shown in the figure below. Using (a) multiple-

application trapezoidal rule and (b) multiple-application Simpson’s 3/8 rule, estimate the number
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of palm trees if a planting pattern of 16 trees per 1000 m? will to be used. All dimensions shown

are in kilometers.

4.84
5.42 km

J8.04

EIt

b) Evaluate the integral ff i dx using (a) single application of Simpson’s 3/8 rule and (b) multiple-

application Simpson’s 3/8 rule with n = 6. Estimate the error in each stage and note that the exact

value of the integral is 1.3863.
¢) Use Simpson’s 3/8 Rule to find the approximate value of the integral fol V1—x? dx .

d) Using Simpson’s 3/8 rule with (a) single application and (b) multiple-application with n = 6,
evaluate the following integral. Estimate the error in each stage and note that the exact value of

the integral is 2.5012. f;(l — e %) dx

¢) Evaluate the following integral using (a) single application of Simpson’s 3/8 rule and (b) multiple-

application Simpson’s 3/8 rule with n = 6. Estimate the error in each stage and note that x is in

radians and the exact value of the integral is 16.5664. | = f:/2(8 + 4 cosx) dx

4.2.3.4. Integration with Unequal Segments

All numerical integration formulas that have been presented in this chapter were based on
equally spaced data points. In practice, there are many situations where this assumption does not
hold and we must deal with unequal-sized segments. For example, experimentally derived data are
often of this type. For these cases, one method is to apply the trapezoidal rule to each segment and
sum the results:

f(xo) + (1) N

fx1) + f(x3) L ftn—1) + f(x)
2

I=nh h 4.30
1 2 + n 2 ( )

hy

where h; = the width of segment i. This was the same approach used for the multiple-application
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trapezoidal rule. The only difference between them is that the h’s in the former are constant.

Example (4.11): Using the following polynomial function, the table below was generated with

unequally spaced values of x. f(x) = 0.2 + 25x — 200x2 + 675x3 — 900x* + 400x°

Determine the integral for these data in the table using the trapezoidal rule. Estimate the error and

note that the exact value of the integral is 1.640533.

X 00 | 012|022 | 032|036 |040 | 044 | 054 | 064 | 0.70 | 0.80
o] o — on o ] v ~ jo)) o] o]
(] [\ <t N ) ] 0 (o)) [ ) (]
o c~ (9N o o)) ) N [\ (o) < ja]
‘f(X) g: N Ya) o < \O [ o~ — N N
N A A < S < & 2 = A &
o — — — o o~ o o o (e} =
Solution: From table, the number of segments n = 10
I =3 J(Xo)+/(x1) + h J(x1)+f(x3) +. 4 h S (xg)+f(xo) +h J(xo)+f(X10)
=ty - 2 > m Mg - 10 >
0.20+1.309729 1.309729+1.305241 3.181929+2.363 2.36+0.232
[=012 ———+01——F——+-+ 006 > +0.1—
[ = 1.594801
which represents an error of |~oeo_ LMLy 900 = 2.79%

1.640533

Example (4.12): Resolve the previous example to compute the integral for the data in the table using

the best combination of trapezoidal and Simpson’s rules. Estimate the error and note that the exact

value of the integral is 1.640533.

Solution:

The data in the table are depicted in the figure below. Notice that some adjacent segments are
of equal width and, consequently, could have been evaluated using Simpson’s rules. This usually

leads to results that are more accurate.
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fx)

1/3 rule

3/8 rule

1/3 rule %

0
.

From table, the best combination of trapezoidal and Simpson’s rules are

-~

/////////
V%

(<)
o
o

X 00 1012022032 036|040 | 044 | 054 | 0.064 0.70 | 0.80
o N — o o c v o~ o o o
) N <+ oy o= = o0 o & = S
S ~ N o oy = N S oy = S
f(x) S o) v o =+ NG N ~ — A Q
S S S = =~ v - = ) N n
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%2 28 = =28 2 28 = ~"§£~§~
(= > = 4 =
Method Q f & E_‘: Il & OE‘; f & E_‘: Il Q f Q Il
& 2| 22 = £¥ = ES = | §F =| F <
= 195} 195} 195} i =

The first segment from x = 0.0 to 0.12 is evaluated with the trapezoidal rule:

Iy = (012 — 0) 22222222 = 0.09058376

Because the next two segments from x = 0.12 to 0.32 are of equal length, their integral can be
computed with Simpson’s 1/3 rule:

1.309729 + 4 (1.305241)+ 1.743393
6

The next three segments from x = 0.32 to 0.44 are also equal and, as such, may be evaluated with

I, = (032 —0.12)

=0.2758029

the Simpson’s 3/8 rule to give:

13 _ (044 _ 032) 1.743393 + 3 (2.074903 + 2.4560) + 2.842985

5 = 0.2726863

Similarly, the Simpson’s 1/3 rule can be applied to the two segments from x = 0.44 to 0.64 to yield:

14 — (064 _ 044) 2.842985+ 4 (3.507297)+ 3.181929 — 0.6684701

6
Finally, the last two segments from x = 0.64 to 0.70 and from x = 0.70 to 0.80, which are of unequal

length, can be evaluated with the trapezoidal rule to give:
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3.181929 + 2.3630

Is = (0.7 — 0.64) > = 0.1663479

2.3630 +0.232
2

I =(0.8—-0.7) = 0.1297500

The area of these individual segments can be summed to yield a total integral of
I=L+L+L+1,+15+ 1= 1603641

) . |1.640533— 1.603641
which represents an error of l
! | 1.640533

X 100 = 2.25%

Exercise (4.4):

a) Using the unequally spaced data in the table below, evaluate the integral from x = 0 to 0.6 using

(a) the trapezoidal rule and (b) the best combination of the trapezoidal and Simpson’s rules to

obtain the highest accuracy.

X 0 0.05 0.15 0.25 0.35 0.475 0.6
f(x) 2 1.8555 1.5970 1.3746 1.1831 0.9808 0.8131

b) The data in the table was collected for a cross-section of a river (y = distance from bank and H =
depth). Compute the cross-sectional area of the river using numerical integration with (a) the

trapezoidal rule and (b) the best combination of the trapezoidal and Simpson’s rules.

y (m) 0 1 3 5 7 8 9 10
H (m) 0 1 1.5 3 35 | 32 2 0

¢) The velocity of a bicycle versus time is presented in the table below. Using (a) the trapezoidal rule
and (b) the best combination of the trapezoidal and Simpson’s rules, estimate the distance traveled

by the bicycle from rest in meters.

Time (min) 1 | 2 325,45, 6 | 7 | 8 | 9 {9510
Velocity(m/s) | 5 | 6 | 55| 7 |85 8 | 6 | 7 | 7 5

4.3. Numerical Differentiation

The Taylor series is of great value in the study of numerical methods. Essentially, the Taylor
series provides a means to predict a function value at one point in terms of the function value and
its derivatives at another point. In particular, the theorem states that any smooth function can be
approximated as a polynomial.

A useful way to gain insight into the Taylor series is to build it term by term. For example, the

first term in the series is
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f(xi1) = f(x;) (4.31)
This relationship, called the zero-order approximation, indicates that the value of fat the new

point is the same as its value at the old point. This result makes intuitive sense because if x; and x;+1

are close to each other, it is likely that the new value is probably similar to the old value.

Equation (4.31) provides a perfect estimate if the function being approximated is, in fact, a
constant. However, if the function changes at all over the interval, additional terms of the Taylor
series are required to provide a better estimate. For example, the first-order approximation is

developed by adding another term to yield

i) = flx) + frx) (g — x3) (4.32)

The additional first-order term consists of a slope f”(x;) multiplied by the distance between x;
and x;+1. Thus, the expression is now in the form of a straight line and is capable of predicting an

increase or decrease of the function between x; and xi+1.

Although Equation (4.32) can predict a change, it is exact only for a straight-line, or linear,
trend. Therefore, a second-order term is added to the series to capture some of the curvature that the
function might exhibit:

£ )

T (41 — 2)° (4.33)

fOign) = fO) + f) (g —x) +

In a similar manner, additional terms can be included to develop the complete Taylor series

expansion:
fxiva) = Q) + 1) (X1 — %) + %(xiﬂ —x;)?
3 (x;) | ™) (x,) (4.34)
+ f?)—!xl(xi+1 —x)% 4t fol(le —x)" + Ry

where n! is the factorial of n.

Note that because Equation (4.34) is an infinite series, an equal sign replaces the approximate sign
that was used in Equations (4.31) through (4.33). A remainder term ( R, ) is included to account for

all terms from » + 1 to infinity:

f(n+1)(cf)

Rn = (n+ 1)!

(xipg —x)™*! (4.35)

where the subscript #» indicates that this is the remainder for the nth-order approximation and £ is a
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value of x that lies somewhere between x; and x;+1. It is often convenient to simplify the Taylor series

by defining a step size h = x;:1 - X; and expressing Equation (4.34) as

[ (x;) e f(g)(xi)

34 ...
2! 3! ot

f(xip1) = f(x) + f'(xph +

(.,
[G) 0 g (@36)
n!

where the remainder term is now

_ IO

" (n+ D! 437)

Example (4.13): Use zero- through fourth-order Taylor series expansions to approximate the function

fx)=-01x*-0.15x3-05x2% — 0.25x + 1.2

from x; = 0 with 2 = 1. That is, predict the function’s value at x;+1= 1.

Solution:

Because we are dealing with a known function, we can compute values for f{x) between 0 and
1. The results (Fig. 4.12 ) indicate that the function starts at f (0) = 1.2 and then curves downward to
f(1)=0.2. Thus, the true value that we are trying to predict is 0.2.

The zero-order Taylor series approximation with n =0 is [Eq. (4.31)]

Sfxi)=12
Thus, as in Fig. 4.12, the zero-order approximation is a constant. Using this formulation results in a
truncation error (E;) of

Truncation Error = E; = true value — approximation (4.38)

E:=02-12=-10

Using the first-order Taylor series approximation with » = 1, the first derivative must be

determined and evaluated at x = O:
f'(0) = —0.4(0.0)3 — 0.45 (0.0)> — 1.0 (0.0) — 0.25 = —0.25

Therefore, the first-order approximation is [Eq. (4.32)]

flxi;1) =12 — 025h
which can be used to compute f{1) = 0.95. Consequently, the approximation begins to capture the
downward trajectory of the function in the form of a sloping straight line (Fig. 4.12). This results in

a reduction of the truncation error to
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E: =02-095 =-0.75

For n = 2, the second-order Taylor series approximation requires the second derivative to be

evaluated at x = 0:
£(0) = —1.2(0.0)2-0.9(0.0)—1.0 = — 1.0

Therefore, according to Eq. (4.33),
flxie) = 12— 025h— 0.5 h?

and substituting 2= 1, f(1)=0.45. The inclusion of the second derivative now adds some downward
curvature resulting in an improved estimate, as seen in Fig. 4.1. The truncation error is reduced further

to

E: =02-045 =-0.25

Additional terms would improve the approximation even more. In fact, the inclusion of the third
and the fourth derivatives results in exactly the same equation we started with (putting x = h):

f(xi41) =1.2— 025h—05h2—0.15h3— 0.1h*

where the remainder term is

A
Ru= =205 =0

because the fifth derivative of a fourth-order polynomial is zero. Consequently, the Taylor series
expansion to the fourth derivative yields an exact estimate at x;+1 = 1:

f()=12-025(1)-05(1)2—-0.15(1)* - 0.1 (D*=0.2

fx)

flx)

Zero order

é f('\.: + 1) - /("l)

Wr flx;, 1) = flx) +fx)h

0.5 [~ f"(‘rl) l12

2!

S, ) = ) + ' (x)h +

./‘('\.: + 1)

h
Fig. 4.12 The approximation using zero-order, first-order, and second-order Taylor series
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In general, the nth-order Taylor series expansion will be exact for an nth-order polynomial.
For other differentiable and continuous functions, such as exponentials and sinusoids, a finite number
of terms will not yield an exact estimate. Each additional term will contribute some improvement,

however slight, to the approximation.

The Taylor series can be used to estimate the value of derivatives in different forms, such as

forward, backward, and centered divided difference approximations of the derivatives (Fig. 4.13).

flx) flx) flx)

(a) (b) (c)

Fig. 4.13 Graphical depiction of (a) forward, (b) backward, and (c) centered finite-divided-
difference approximations of the first derivative.

4.3.1. Forward Difference Approximation of the First Derivative

It is termed a “forward” difference because it utilizes data at i and i + I to estimate the
derivative. If the function fand its first » + / derivatives are continuous on an interval containing X;
and x;-;, then the value of the function at x;:; is given by a forward Taylor series approximation as:
[ (x;) B2 @) B3 ™ {(x)

P T L LA Y (R 439
T 3 ++n!n+Rn()

fGivn) = fQx) + f'(x)h +

Equation (4.39) is called the forward Taylor series or Taylor’s formula. If the remainder R, is
omitted, the right side of Equation (4.39) is called the forward Taylor polynomial approximation to

f (xi+1). Truncating this equation after the first derivative and rearranging yields

fGie) = fx) + f'(x)h + Ry (4.40)

which can be solved for

- LG ZIG) R
v h ' h (4.41)
First-order approximation Truncation error

Using Eqs. (4.37) and (4.41) yields
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fOE L R fUOR
= —_— —— = — 442
Forn=1andR, = TR h i TR X h (4.42)
or

L= o (4.43)

h
Therefore, Equation (4.41) can be expressed as

X;

Thus, the estimate of the derivative [the first part of Eq. (4.41) or (4.44)] has a truncation error of
order (h). In other words, the error of our derivative approximation should be proportional to the step
size. Consequently, if we halve the step size, we would expect to halve the error of the derivative.
Equation (4.44) is referred to as the forward finite divided difference of the first derivative, h is
called the step size, that is, the length of the interval over which the approximation is made, and O(h)

is the error.

4.3.2. Backward Difference Approximation of the First Derivative
The Taylor series can be expanded “backward” to calculate a previous value i-1 on the basis of

a present value i, as in

FGties) = F) — 1 Goh + LoD e . (445

Truncating this equation after the first derivative and rearranging yields

f(x) —hf(xi—1) (4.46)

f'(x) =

which is referred to as the backward finite divided difference of the first derivative with the error of
O(h).

4.3.3. Centered Difference Approximation of the First Derivative
A third way to approximate the first derivative is to subtract the backward from the forward

Taylor series expansion to yield

®(x
Flrn) = Fxim) +2 ' Geoh + Lo 4 @47

Truncating this equation after the first derivative, the above equation can be solved for
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F(x) = f(xi+1)2—hf(xi—1) _ o) (4.48)

which is referred to as the centered finite divided difference of the first derivative with the error of
O(h?). Notice that the truncation error is of the order of h? in contrast to the forward and backward
approximations that were of the order of h. Consequently, the Taylor series analysis yields the

practical information that the centered difference is a more accurate representation of the derivative.

Example (4.14): Use forward and backward difference approximations of O(h) and a centered

difference approximation of O(#°) to estimate the first derivative of
fx)=-01x*-0.15x3-05x2% — 0.25x + 1.2
at x = 0.5 using a step size h = 0.5. Repeat the computation using h = 0.25. Note that the derivative
can be calculated directly as
f'(x)=—04x3%—-045%x%2-10x — 0.25
and can be used to compute the true value as f'(0.5) = —0.9125 .

Solution:

Atx=0.5 and h = 0.5, the function can be employed to determine

Xi.1 =0 - f(x1)=f0.0)=12
xi =0.5 —  f(xi)=f(0.5)=0.925
xir1 = 1.0 —  f(xin)=f(1.0)=02
These values can be used to compute the forward divided difference,
frlag) = L) g5 = 2220928 g 45

—0.9125 — (~1.45)

—— 22 X 100 = 58.9%

which represents an error of

The backward divided difference,

[l = LB ) pr05) =« 22122 g 55

-0.9125 — (=0.55)
-0.9125

which represents an error of X 100 = 39.7%

The centered divided difference,

f’(xi) ~ f(xi+1)2—,{(xi—1) N f’(OS) ~ 0-21_01-2 = —1.0

-0.9125 — (-1.0)

=2 X100 = 9.6%

which represents an error of
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At x = 0.5 and h = 0.23, the function can be employed to determine

Xi1 = 0.25 > f(xi1) =£(0.25)=1.10351563
xi =0.5 —>  f(xi))=£(0.5)=0.925
Xis1 = 0.75 > f(xis1)) =£(0.75) = 0.63632813

These values can be used to compute the forward divided difference,

F10x) = f(xi+1i)l—f(xi) = F(05) = 0.63632:;3;—0.925 — 1155

-0.9125 — (-1.155)

= x 100 = 26.5%

which represents an error of

The backward divided difference,

0.925-1.10351563 __
0.25 o

-0.714

f,(xi) ~ f(xi)_’]:(xi—l) N f’(OS) ~

-0.9125 — (-0.714)
-0.9125

which represents an error of x 100 = 21.7%

The centered divided difference,

F10x) = f(xi+1)2—,{(xi_1) ~ F'(0.5) = 0.636328130—51.10351563 — _0934

-0.9125 — (-0.934)

= X 100 = 2.4%

which represents an error of

For both step sizes, the centered difference approximation is more accurate than forward or
backward differences. Also, as predicted by the Taylor series analysis, halving the step size
approximately halves the error of the backward and forward differences and quarters the error of the

centered difference.

4.3.4. Finite Difference Approximations of Higher Derivatives.

Besides first derivatives, the Taylor series expansion can be used to derive numerical estimates

of higher derivatives. To do this, we write a forward Taylor series expansion for f{x;:2) in terms of
Sxi):

f(x)

—r (2R)? + --- (4.49)

f(xi2) = fx) + f(x)(2h) +

Equation (4.39) can be multiplied by 2 and subtracted from the above equation to give

fis2) =2 f(xie) = —f(x) + £ (x) > + - (4.50)
which can be solved for
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f(xiv2) = 2 fQxpq) + F(x)

= +0(h) (4.51)

fr () =

This relationship is called the forward finite divided difference approximations for the second
derivative of the order of h. Similar manipulations can be employed to derive a backward finite

divided difference approximations for the second derivative of the order of h

fO) =2 (1) + f(xi-2)

- +o (452)

[ =
and centered finite divided difference approximations for the second derivative of the order of h*

fOiv1) =2 fOx) + fxi-1)
h2

f(x) = + 0(h?) (4.53)

As was the case with the first-derivative approximations, the centered case is more accurate.
Notice also that the centered version can be alternatively expressed as

f(xi+1)h_ e _hf(xi_l) _fOip) =2 f () + f(xi0) (4.54)

h h?

fr(x) =

Thus, just as the second derivative is a derivative of a derivative, the second divided difference
approximation is a difference of two first divided differences (using centered finite divided difference

of the first derivative applied at Xi +n2).

Example (4.15): Estimate the second derivative at x = 0.5 using a step size h = 0.25 of

f(x) =—01x*-0.15x3-05%x2 — 0.25x + 1.2

using forward and backward difference approximations of O(h) and a centered difference
approximation of O(#°). Note that the derivative can be calculated directly as
f'"x)=—-12x%2-09x-1.0

and can be used to compute the true value as f''(0.5) = —1.75 .

Solution: At x = 0.5 and h = 0.25, the function can be employed to determine

Xi2=0.0 - f(xi1)=/(0.0)=12

X1 =0.25 > f(xi1) =/(0.25) = 1.10351563
xi =0.5 —  f(x)=/(0.5)=0.925

xit1 =0.75 > f(xin) =£(0.75) = 0.63632813
Xi2=1.0 - f(xin)=f(1.0)=02
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These values can be used to compute the forward divided difference,

f”(xi) ~ Jeig2)—2 f(Xig1)+(x1) 5 f”(OS) ~ 0.2—-2(0.63632813) + 0.925 __ 23625

h2 0.252
which represents an error of _1'75__1(.;5'3625) x 100 = 35%
The backward divided difference,
£1(x) = LOD-2 Q)+ (ia) £7(0.5) = 0.925 -2 (1.10351569)+12 _ _ 1 2755

h? 0.252

-1.75 — (-1.3125)

—— X 100 = 25%

which represents an error of

The centered divided difference,

£ () = f(xi+1)—2];l(2xi)+f(xi_1) S F(05) = 0.63632813—220295225)+1.10351563 — 17625

-1.75 — (-1.7625)
-1.75

which represents an error of X 100 = 0.71%

The centered difference approximation is more accurate than forward or backward differences.

Exercise (4.5):

a) Use forward and backward difference approximations of O(h#) and a centered difference
approximation of O(h#?) to estimate the first derivative of the function below. Evaluate the
derivative at x = 2 using a step size of # = 0.2. Compare your results with the true value of the
derivative.

fx) =25x—6x*>+7x—88

b) Estimate the second derivative of the same function examined in the previous problem. Use a
centered difference approximation of O(#?). Perform the evaluation at x = 2 using step sizes of /4

=0.25 and 0.125. Compare your estimates with the true value of the second derivative.
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Chapter Five - Ordinary Differential Equations

S.1. Introduction

Numerical methods are becoming more and more important in engineering applications, not
only because of the difficulties encountered in finding exact analytical solutions, but also due to the
ease with which numerical techniques can be used in conjunction with modern high-speed digital
computers. Several numerical procedures for solving initial value problems involving first-order
ordinary differential equations are discussed in this chapter.

An ordinary differential equation is one in which an ordinary derivative of a dependent
variable y with respect to an independent variable x is related in a prescribed manner to x, y and

lower derivatives. The most general form of an ordinary differential equation of nth order is given

by

dny dy dzy dn—ly
— — f V,—— 5.1
dx™ (x’ ’ dx ’ dxz ’ ’ dxn—l ( )

The above equation is termed as ordinary (or ODE) because there is only one independent
variable. This is in contrast to a partial differential equation (or PDE) that involves two or more
independent variables. Differential equations are also classified as to their order. For example, the
following equation, based on Newton’s second law to compute the velocity y of a falling parachutist

as a function of time 7, is called a first-order equation because the highest derivative is a first

derivative.
dv C
7, 52
dt g m v 5-2)

where g is the gravitational constant, m is the mass, and c is a drag coefficient. A second-order
equation would include a second derivative. For example, the equation describing the position x of a

mass-spring system with damping is the second-order equation,

d?x dx
halliad haitd — 53
mdt2+cdt+kx_0 (5.3)

where c is a damping coefficient and k is a spring constant. Similarly, an nth-order equation would
include an nth derivative.

The degree of differential equation is represented by the power of the highest order derivative
in the given differential equation. The differential equation must be a polynomial equation in

derivatives for the degree to be defined. For example;
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daty | (d2y\° dy _ : :
—=t (@) — 3; +y=0 - Order: 4 Degree: 1

2 d?y | dy 2 _ ) )
At + (x* =4y =0 - Order: 2 Degree: |
da—y)z + (1?1)5 +-X- =¥ - Order: 3 Degree: 2
\dx3/ \dx? / x2+1 ) gree:

The differential equations are also classified as Linear and non-Linear differential equations.
If a differential equation is of first degree in the dependent variable and its derivatives (accordingly,
there cannot be any term involving the product of the dependent variable and its derivatives) then

it is called a linear differential equation otherwise it is non-linear.

d?y dy _ .

T 4x L 2y = cosx - Linear

ay v _ - ( gz)
oz T Ayt 2y =cosx - Non-Linear because of {y -
d?y . . .

— +siny =0 - Non-Linear because of (siny)

To solve an ordinary differential equation of the type of equation (5.1), a set of conditions are
required. The number of conditions required is equal to the order of the differential equation. When
all the conditions are given at one value of the independent variable and the solution proceeds from
that value of the independent variable, we have an inifial-value problem. When the conditions are
given at different values of the independent variable, we have a boundary-value problem.

There are two broad categories of numerical methods to solve ordinary differential equations:
one-step or single-step methods (Fig. S.1a), which permit the calculation of y:i+1, given the differential
equation and yi. Moreover, multistep, step-by-step, or marching methods (Fig. 5.1b), which require

additional values of y other than at i.

(a) (b)

Fig. 5.1 Graphical depiction of the fundamental difference between (a) one-step and (b) multistep
methods for solving ordinary differential equations (ODEs).
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Higher-order differential equations can be reduced to a system of first-order equations. For

equation (5.3), this can be done by defining a new variable y, where

dx

= — 5.4
Y= (5.4)
which itself can be differentiated to yield
2
dy _d7x (5.5)
dt  dt?
Equations (5.4) and (5.5) can then be substituted into equation (5.3) to give
d
m—y+cy+kx:0 (5.6)
dt
or
ﬂ:_cy+kx (5.7)

dt m

Thus, equations (5.4) and (5.7) are a pair of first-order differential equations that are equivalent to
the original second-order equation. Because other nth-order differential equations can be similarly
reduced, this chapter focuses on the solution of initial value problems involving first-order

differential equations and using one-step methods.

5.2. One-Step or Single-Step Methods

This chapter is devoted to solving ordinary differential equations of the form dy/dx = f(x,y).

All one-step (also called single-step) methods can be expressed in this general form below, with

the only difference being the manner in which the slope ¢ is estimated.
New value = Old value + Slope x Step Size
or, in mathematical terms,
Vit1 =Yi+ Oh (5.8)

According to this equation, the slope estimate of ¢ is used to extrapolate from an old value yi to a
new value yiv1 over a distance or step size h (Fig. 5.2). This formula can be applied step-by-step to
compute out into the future and, hence, trace out the trajectory of the solution. Several one-step
methods will be studied in this chapter, which are Euler’s method, modified Euler’s method, and

Runge-Kutta methods.
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=y; + ¢h

Step s'ize =h
Fig. 5.2 Graphical depiction of a one-step method.

5.2.1. Euler’s Method

Euler’s method (also called the forward Fuler method) is a single-step method for solving
a first-order ordinary differential equation. The slope at the beginning of the interval is taken as
an approximation of the average slope over the whole interval. The first derivative provides a direct

estimate of the slope at x; (Fig. 5.3):

D= f(xyi)
where f(x;,y;) 1sthe differential equation evaluated at x; and y;. This estimate can be substituted into
equation (5.8):
Vier =Yi + f(xy) h (5.9)

This formula is referred to as Euler’s (or the Euler-Cauchy or the point-slope) method. A new value
of y s predicted using the slope (equal to the first derivative at the original value of x) to extrapolate

linearly over the step size / (Fig. 5.3).

.“

/ X; Xivl X

Fig. 5.3 Euler’s method.
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Example (5.1): Use Euler’s method to solve the following differential equation

Z—z: —xy?,y(2)=1 and 2<x <3 with h=0.1 and 0.2

Find the relative error by comparing the results with exact solution from y = o

Solution:
Ath=0.1
Euler’s formula given by Eq.(5.9) can be used the initial condition of yo =1 at xo =2
Yier =Yi + fOy) h = yi— 0.1x; 7
yi =y(21) =y, — 01x,y2=1— 01 x2x12=0.8
y, =y(22)=y; — 0.1x; vy =0.8— 0.1 x 2.1 X 0.82 = 0.6656
y3 =y(23) =y, — 0.1 x, y? = 0.6656 — 0.1 X 2.2 X 0.6656% = 0.5681

The calculations continue until we reach y1o. The predicted values of y for x =2, 2.1, 2.2, ...., 3 with

h = 0.1 are presented in the table below in addition to the exact values.

. yi i Relative Error %
' (Euler’s method) | (Exact values) | |(yFxect — yEuler)/yExact| x 100

xo=2.0 yo=1 yo=1 0

2.1 0.8000 0.8299 3.60

22 0.6656 0.7042 5.48

2.3 0.5681 0.6079 6.55

24 0.4939 0.5319 7.14

2.5 0.4354 0.4706 7.48

2.6 0.3880 0.4202 7.66

2.7 0.3488 0.3781 7.75

2.8 0.3160 0.3425 7.74

2.9 0.2880 03120 7.69
X10=3.0 yio = 0.2640 yio = 0.2857 7.60

Ath=0.2

Euler’s formula given by Eq.(5.9) can be used the initial condition of yo =1 at xo =2
Yier =YVi + fOy) h = yi— 02x; 7
yi =y(22) =y, — 02x,y3=1-— 02 x2x12=06
vy, =y(24) =y, — 02x,y? =06 — 0.2 X 2.2 x 0.6 =0.4416
The calculations continue until we reach ys. The predicted values of y for x =2, 2.2, 2.4, ...., 3 with

h = 0.2 are presented in the table below in addition to the exact values.
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. yi Yi Relative Error %
' (Euler’s method) | (Exact values) | |(yF¥ect — yFuler)/yFxact| x 100
xo= 2.0 yo=1 yo=1 0
22 0.6000 0.7042 14.80
2.4 0.4416 0.5319 16.98
2.6 0.3480 0.4202 17.18
2.8 0.2850 0.3425 16.78
xs=3.0 ys = 0.2395 ys =0.2857 16.16

—=— Exact
0.8 -0 - Euler at h=0.1
---A--- Euler at h=0.2

Example (5.2): Use Euler’s method to numerically integrate

% = —2x3 +12x2 — 20x + 85

from x = 0 to x = 4 with a step size of 0.5 and 0.25. The initial condition at x = 0 is y = 1. Evaluate
the relative error by comparing the results with exact solution given by

y = —0.5x* + 4x3 — 10x2 + 85x + 1

Solution:

Ath=0.5
Euler’s formula given by Eq.(5.9) can be used the initial condition of yo =1 atxo =0

Vier =Vi + fxy) h = y; — x3 + 6x2 — 10x; + 4.25

y; = y(0.5) =yo — x5 + 6x2 —10xy + 425=1—0+0— 0+ 4.25 = 5.25

y, = y(1.0) = y; — x¥ + 6x2 — 10x; + 4.25 = 5.25 — (0.5)3 + 6(0.5)? — 10(0.5) +
4.25 = 5.875

The calculations continue until we reach ys. The predicted values of y for x = 0.0, 0.5, 1.0, ...., 4 with

h = 0.5 are presented in the table below in addition to the exact values.
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. i i Relative Error %
' (Euler’s method) | (Exact values) | |(yF¥ect — yFuler)/yFxact| x 100
X0 = 0.0 yo = 1.0000 yo = 1.0000 0.00
0.5 5.2500 3.2188 63.11
1.0 5.8750 3.0000 95.83
1.5 5.1250 2.2188 130.99
2.0 4.5000 2.0000 125.00
2.5 4.7500 2.7188 74.71
3.0 5.8750 4.0000 46.88
3.5 7.1250 4.7188 50.99
xg =4.0 yg = 7.0000 yg = 3.0000 133.33

From the figure below, it can be noted that for h = 0.5, although the computation captures the
general trend of the true solution, the error is considerable. This error can be reduced by using a

smaller step size.

8.0
P
60 Lk —@\ s ,0’ ,’A ,—A"ﬁ
Q 4 b of w7 : -~
/I A - : 5N - "A /."'f‘ . 23
> 40 - A X A '«\\
1, \An, i . Gl B
2y B " »
V4 e A
20  / O o o |-O-Eulerath=05
K’" - Euler at h=0.25
=— Exact
0.0
0.0 1.0 2.0 3.0 4.0
X
At h=0.25

Euler’s formula given by Eq.(5.9) can be used the initial condition of yo=1atxo =0

Vier =Vi + f(xy) h = y; — 0.5x% + 3x? — 5x; + 2.125

y; = y(0.25) =y, — 0.5x3 +3x3 — 5x, +2.125=1-0+0—-0+ 2.125 = 3.125

y, = y(0.5) = y; — 0.5x} + 3x# — 5x; + 2.125 = 3.125 — 0.5 (0.25)% + 3(0.25)? —
5(0.25) + 2.125 = 4.1797
The calculations continue until we reach y16. The predicted values of y for x = 0.0, 0.25, 0.5, ...., 4

with h = 0.25 are presented in the table below in addition to the exact values. For h = 0.25 and from

the figure above, it is clearly proved that a smaller step size reduced the relative error.
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. i i Relative Error %
' (Euler’s method) | (Exact values) | |(yFxect — yFuler) /yFxact| x 100
x0=0.00 yo = 1.0000 yo = 1.0000 0.00
0.25 3.1250 2.5605 22.04
0.50 4.1797 3.2188 29.85
0.75 4.4922 3.2793 36.99
1.00 4.3438 3.0000 44.79
1.25 3.9688 2.5918 53.13
1.50 3.5547 2.2188 60.21
1.75 3.2422 1.9980 62.27
2.00 3.1250 2.0000 56.25
2.25 3.2500 2.2480 44.57
2.50 3.6172 2.7188 33.05
2.75 4.1797 3.3418 25.07
3.00 4.8438 4.0000 21.09
3.25 5.4688 4.5293 20.74
3.50 5.8672 4.7188 2434
3.75 5.8047 43105 34.66
x16 = 4.00 vi6 = 5.0000 yi6 = 3.0000 66.67

A fundamental source of error in Euler’s method is that the derivative at the beginning of the
interval is assumed to apply across the entire interval. A simple modification is available to help
circumvent this shortcoming, which will be demonstrated in the next section. This modification
actually belong to a larger class of solution techniques called Runge-Kutta methods. However,
because they have a very straightforward graphical interpretation, we will present them prior to their

formal derivation as Runge-Kutta methods.

5.2.2. Heun’s Method

The Heun’s method (also called modified Euler’s method) is a single-step numerical
technique for solving a first-order ordinary differential equation. The method is a modification of
Euler’s method in which the slope or derivative in each interval is considered constant and equal to
the slope of at the initial point.

One method to improve the estimate of the slope involves the determination of twe derivatives

for the interval, one at the initial point and another at the end point. The fwo derivatives are then
averaged to obtain an improved estimate of the slope for the entire interval. This approach, called

modified Euler’s method or Heun’s method, is depicted graphically in Fig. 5.4.
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Recall that in Euler’s method, the slope at the beginning of an interval

yi = f(xiyi) (5.10)

is used to extrapolate linearly to yi:1:

Vi =Yi+ f(xuy) h (5.11)

For the standard Euler method, we would stop at this point. However, in Heun’s method the y2,,
calculated in Eq. (5.11) is not the final answer, but an intermediate prediction. This is why we have
distinguished it with a superscript 0. Equation (5.11) is called a predictor equation. 1t provides an

estimate of y;:1 that allows the calculation of an estimated slope at the end of the interval:

Vit1 = f(xi+1:yl'o+1) (5.12)

Slope = f(x;, 1, Y%, 1)

a0l y

F s ¥) + (x4 15974 0)

2

Slope =

/ X '\‘I + 1 X / X Xis1 X

(a) (b)

Fig. 5.4 Graphical depiction of Heun’s method. (a) Predictor and (b) corrector.

Thus, the two slopes [Eqs. (5.10) and (5.12)] can be combined to obtain an average slope for the

interval:

)_1, — yl, +2yi,+1 s f(xi'yi) +£(xi+1'yi0+1) (513)

This average slope is then used to extrapolate linearly from y; to yi+1 using Euler’s method:

f(xiy0) +£(xi+1'yi0+1) h (5.14)

Yisr =Yi tY' h =y +
which is called a corrector equation.

The Heun’s method is a predictor-corrector approach. All the multistep methods are of this
type. The Heun’s method is the only one-step predictor-corrector method described in this chapter.

As derived above, it can be expressed concisely as
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Predictor (Fig. 5.4a): Vi =Y+ f(xuy) b (5.15)
(i V) + F (X1 V5
Corrector (Fig. 5.4b): Viv1 = Yi +f 0 Yi) f (Xivs, Vi) h (5.16)

2

Note that because Eq. (5.16) has yi+1 on both sides of the equal sign, it can be used in an iterative

fashion. That is, an old estimate can be used repeatedly to provide an improved estimate of yi.

Example (5.3): Use the modified Euler’s method to solve the differential equation
2= —2x% + 12x2 — 20x + 85

from x = 0 to x = 4 with a step size of 0.5. The initial condition at x = 0 is y = 1. Evaluate the relative
error by comparing the results with exact solution given by

y = —0.5x* + 4x3 — 10x2 + 85x + 1

Solution:
To calculate y1 using xo=0, yo=1, and h=0.5

First, the slope at (xo, yo) 1s calculated as

f(x0,V0) = —2x3 + 12x5 — 20x, + 8.5

S £(0,1) = —2x3 +12x2 — 2069 +85= —~0+0 — 0+ 8.5 = 85
From the predictor Eq. (5.15) yoi =yi+ f(x,y)h wehave

v =yo + f(x0,¥0)h = 1+ (85)0.5 = 5.25

Note that this is the result that would be obtained by the standard Euler’s method. Now, to improve
the estimate for y;, we use the value y{ to predict the slope at the end of the interval (xy,vY).
However, because the ODE is a function of x only, this result (y?) has no effect on the second step

to compute f(xqy, yY)
flx,y)) = —2x3 +12x# — 20x, + 8.5
f(0.5,5.25) = =2 (0.5)% + 12 (0.5)? — 20 (0.5) + 8.5 = 1.25

0
f(xo'J/o)';‘f(xl'yl) h=1+22205=34375

Using the corrector Eq. (5.16)  y{ =y, +

To calculate y2 using x1 =0.5, y1=23.4375, and h=0.5

First, the slope at (x1, y1) is calculated as

f(xy,y1) = —2x3 + 12x% — 20x; + 8.5
— £(0.5,3.4375) = —2(0.5)% + 12(0.5)% — 20(0.5) + 8.5 = 1.25
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From the predictor Eq. (5.15) yo1=yi+ f(x, y)h wehave
yY =vy1 + f(x1,y1)h = 3.4375 + (1.25) 0.5 = 4.0625

Now, to improve the estimate for y,, we use the value y2 to predict the slope at the end of the interval
(x,,v3). However, because the ODE is a function of x only, this result (yY) has no effect on the

second step to compute f(x,, y3)
flxy,v9) = —2x3 + 12x2 — 20x, + 8.5
f(1.0,4.0625) = —2 (1.0)® + 12 (1.0)2 — 20 (1.0) + 85 = —1.5

fCe,y0)+f(x2,9) B = 3.4375 4 125715
2 ) 2

Using Eq. (5.16) yi=y, + 0.5 = 3.375

The calculations continue until we reach ys. The predicted values of y for x = 0.0, 0.5, 1.0, ....,
4 with h = 0.5 using Heun’s method are presented in the table below in addition to the exact values

with the corresponding relative error and the values predicted by Euler’s method in Example (5.2).

yi yi yi Relative Error %
Xi (Euler’s (Heun’s (Exact |(yfxact — yfredicted) [yi¥act]| x 100
method) method) values) Euler’s method | Heun’s method
x0=0.0 | yo=1.0000 | yo=1.0000 | yo=1.0000 0.00 0.00
0.5 5.2500 3.4375 3.2188 63.11 6.79
1.0 5.8750 3.3750 3.0000 9583 12.5
1.5 5.1250 2.6875 22188 130.99 21.1
2.0 4.5000 2.5000 2.0000 125.00 25.0
2.5 4.7500 3.1875 27188 74.71 17.2
3.0 5.8750 4.3750 4.0000 46.88 9.40
3.5 7.1250 4.9375 47188 50.99 4.60
xg=4.0 yg = 7.0000 yg = 3.0000 yg = 3.0000 133.33 0.00
8.0
ot
6.0 il o
o7 o o
/I \.0__——9 A; G
> 4.0 y s
I, - A A ”
2 0 1 4 O @ - - EU]Cr
0 |y
.' A— Heun
—&— Exact
0.0
0.0 1.0 2.0 3.0 4.0
X
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Example (5.4): Use Heun’s method to solve the differential equation Z—z = —2x y? with y(0) =

1 and 0 < x < 0.5 usingstepsizeh = 0.1. Compute the percentage relative error. Given the

exact solution is givenby y = e

Solution:

To calculate yi using xo=0, yo=1, and _h=0.1
First, the slope at (xo, yo) 1s calculated as

f(x0,¥0) = =2 %0 ¥4

= f(0,1) =-2x,y5 =0
From the predictor Eq. (5.15) we have

Vi =Yi+ flxu y)h

- Y2 =Yoo+ f(x.y0)h=1+(0)01=1

Note that this is the result that would be obtained by the standard Euler’s method. Now, to improve

the estimate for y;, we use the value v} to predict the slope at the end of the interval (x;,y?)
flenyd) = —2x y¢
£(0.1,1.0) = -2 (0.1) (1.0)> = —0.2

f(xo'%)"'f(xpyf) h=1+ 0"0-20 1=0.99
2 2 ] -_ [

Using the corrector Eq. (5.16)  y{ =y, +

The table below shows the remaining calculations using the modified Euler’s method. It also

shows the values obtained from the Euler’s method, the exact values, and the percentage relative error

for the both methods.
yi yi yi Relativp Error %
Xi (Euler’s (Heun’s (Exact ((yfet -y fredwted)/ yir'| x 100
method) method) values) Euler’s method | Heun’s method
x0=0.0 yo=1.0000 | yo=1.0000 | yo=1.0000 0.00 0.00
0.1 1 0.9900 0.9901 0.9999 0.0101
02 0.9800 0.9614 0.9615 1.9241 0.0104
0.3 0.9416 0.9173 09174 2.6379 0.0109
0.4 0.8884 0.8620 0.8621 3.0507 0.0116
x5=0.5 ys=0.8253 | ys=0.8001 ys = 0.8000 3.1625 0.0125
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5.2.3. Runge-Kutta Methods

Runge-Kutta (RK) methods are a family of single-step numerical techniques for solving a
first-order ordinary differential equation. Various types of Runge-Kutta methods are
classified according to their order. The order identifies the number of points within the subinterval
that are utilized for finding the value of the slope in Eq. (5.8). For instance, second-order Runge-
Kutta methods use the slope at two points; third-order methods use three-points; and so on. The
classical Runge-Kutta method is of order four and uses four points. Runge-Kutta methods give a
more accurate solution compared to the simpler Euler’s method. The accuracy increases with
increasing order of Runge-Kutta method.

Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without requiring

the calculation of higher derivatives. Many variations exist but all can be cast in the generalized form
of Eq. (5.8):

Yier =Yi + O(xp, ¥, h) h (5.17)

Where @(x;,y;, h) is called an increment function, which can be interpreted as a representative

slope over the interval. The increment function can be written in general form as
Q) = a1k1 +a2k2+“‘+ankn (518)
where the a’s are constants, n is the order of RK method, and the k’s are

ki = f(xiy0)
ky = f(xi +pihyi + quakih)
ks = f(x; + p2hyi + qaskih + gazkah)
(5.19)

kn = f(xi + Pn-1h Vi + quo11k1h + Qo1 2k h + - + qn—l,n—lkn—lh)

where the p’s and ¢’s are constants. Notice that the k’s are recurrence relationships. That is, k;
appears in the equation for k2, which appears in the equation for k3, and so forth. Because each kis a
functional evaluation, this recurrence makes RK methods efficient for computer calculations.
Various types of Runge-Kutta methods can be devised by employing different numbers of terms
in the increment function @(x;, y;, h) as specified by n. Note that the first-order Runge-Kutta (RK)
method with n = 1 is, in fact, Euler’s method. Once n is chosen, values for the a’s, p’s, and ¢’s are

evaluated by setting Eq. (5.17) equal to terms in a Taylor series expansion.
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5.2.3.1. Second-Order Runge-Kutta Methods

The second-order version of Eq. (5.17) is

Vi1 =Yi + (a1ky +azk;) h (5.20)
where

ki = f(xiy:0) (5.21)

ky = f(x; + prh,yi + qu1k1h) (5.22)

In the Runge-Kutta methods of order two, we consider up to the second derivative term in the
Taylor series expansion and then substitute the derivative terms with the appropriate function values
in the interval. By doing this, the values of the four unknown constants ai, a2, p1, and g1 can be

evaluated using the following three equations

a1 + az = 1 (523)
1

az pl = E (524)
1

a4z q11 =5 (5.25)

Because we have three equations with four unknowns, we must assume a value of one of the
unknowns to determine the other three. Suppose that we specify a value for az. Then Eqs. (5.23)

through (5.25) can be solved simultaneously for

a1 = 1 - az (526)
1

= = — 527

P1 =411 24, ( )

Because we can choose an infinite number of values for a:, there are an infinite number of
second-order RK methods. Every version would yield exactly the same results if the solution to the
ODE were quadratic, linear, or a constant. However, they yield different results when (as is typically
the case) the solution is more complicated. We present three of the most commonly used and

preferred versions of the second-order RK method.

a) Heun’s Method with a Single Corrector (az = 1/2)

If a2 is assumed to be 1/2, Eqs. (5.26) and (5.27) can be solved for a1 = 1/2 and pr=q1:1 = 1.
These parameters, when substituted into Eq. (5.20), yield

1 1
Vi1 =Vi+ Gkt ko) h (5.28)
where
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ke = f(xuy:0) (5.29)
k, = f(x; + h,y; + kih) (5.30)

Note that k; is the slope at the beginning of the interval and k: is the slope at the end of the
interval. Consequently, this second-order Runge-Kutta method is actually Heun’s technique

without iteration.

b) The Midpoint Method (az = 1)

If az is assumed to be 1, then a; = 0, p1 = q11 = 1/2, and Eq. (5.20) becomes

Visr =Yi H ka2 h (5.31)
where
ki = fCxiy1) (5.32)
1 1
k, = f<xi +5hyi +§k1h> (5.33)

This is the midpoint method.

c¢) Ralston’s Method (a2 = 2/3)

The value of a2 = 2/3 was chosen to provide a minimum bound on the truncation error for the

second-order RK algorithms. For this version, a: = 1/3 and p1 = q11 = 3/4, and Eq. (5.20) yields

Yier = Vi t <%k1 + §k2> h (5.34)
where

ke = f(xuy:0) (5.35)

ky = f(xi +Zh,yi +%k1h> (5.36)

Example (5.5): Use the midpoint method and Ralston’s method to solve the differential equation

% = —2x3 +12x2 —20x + 85

from x = 0 to x = 4 with a step size of 0.5. The initial condition at x =0 1is y = 1. Compare the results
with the values obtained in Example (5.3) using another second-order RK algorithm, which is the
Heun’s method without corrector iteration. Evaluate the relative error by comparing the results with

exact solution given by y = —0.5x* + 4x3 — 10x2 + 85x + 1
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Solution:

Midpoint method

The first step in the midpoint method is to use Eq. (5.32) with xo =0, yo=1, and h = 0.5 to
compute

ki = f(x;,y) = f(0,1) = —-2(0)3 + 12(0)? — 20(0) + 8.5 =8.5
However, because the ODE is a function of x only, this result (k;) has no effect on the second step

to compute k, using Eq. (5.33)
k,= f (xi +hy+ %klh) = —2(0.25)3 + 12(0.25)% — 20(0.25) + 8.5 = 4.21875

The slope at the midpoint can then be substituted into Eq. (5.31) to predict y at x = 0.5
Viepr =Vi +k, b — vy(0.5) =1+ 4.21875 (0.5) = 3.109375

The computation is repeated, and the results are summarized in the table below.

) Relative Error %
Yi |(yf,'xact _ yfredicted) /yfxact| %< 100

s = £ g 58 5 £ £ g

= g = = 52 = g 5 z

= == E S S = o= E S
0.0 1.000 1.0000 | 1.00000 | 1.00000 1.0000 0.00 0.00 0.0 0
0.5 5.250 34375 | 3.10938 | 3.27734 3.2188 63.11 6.79 34 1.8
1.0 5.875 3.3750 | 2.81250 | 3.10156 3.0000 95.33 12.5 6.3 34
L5 5.125 2.6875 | 1.98438 | 2.34766 2.2188 130.99 21.1 10.6 5.8
2.0 | 4500 2.5000 | 1.75000 | 2.14063 2.0000 125.00 25.0 12.5 7.0
25 4.750 3.1875 | 2.48438 | 2.85547 2.7188 74.71 17.2 8.6 5.0
3.0 | 58750 | 43750 | 3.81250 | 4.11719 4.0000 46.88 9.40 4.7 2.9
35 1 7.1250 | 49375 | 4.60938 | 4.80078 47188 50.99 4.60 23 1.7
4.0 | 7.0000 | 3.0000 | 3.00000 | 3.03125 3.0000 133.33 0.00 0.0 1.0

Ralston’s method

For Ralston’s method, &; for the first interval from Eq. (5.35) equals 8.5 and to calculate 4>
using Eq. (5.36) withxp=0,ys=1,and h=0.5

3 3
k, = f(xi +7hyi+ Zklh) = —2(0.375)% + 12(0.375)% — 20(0.375) + 8.5 = 2.58203125

which can be used to predict y at x = 0.5 using Eq. (5.34)
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Vier =i + G ky + gkz) h > y(05) =1+ <§(8.5) +§(2.58203125)> 0.5) =
3.27734375

The computation is repeated, and the results are summarized in in the table above. Notice how

all the second-order RK methods are superior to Euler’s method.

5.2.3.2. Third-Order Runge-Kutta Methods

For n =3, a derivation similar to the one for the second-order method can be performed. The
result of this derivation is six equations with eight unknowns. Therefore, values for two of the
unknowns must be specified a priori in order to determine the remaining parameters. One common

version that results is

1
Yisr = Vi + 2 (ko + 4y + k)b (5:37)
where
ky = flxuyi) (5.38)
1 1
k,=f <xi + Eh' y; + §k1h> (5.39)
ks = f(x; +hy; — kih + 2k,h) (5.40)

Note that if the derivative is a function of x only, this third-order RK method reduces to
Simpson’s 1/3 rule.

Example (5.6): Solve the following differential equation from x = 0 to x = 1 with a step size of 0.5

using the third-order RK method
2= —2x% + 12x2 — 20x + 85

The initial condition at x = 0 is y = 1. Evaluate the relative error by comparing the results with exact

solution given by y = —0.5x*+ 4x3 — 10x% + 8.5x + 1

Solution:

The first step to evaluate y1 at x = 0.5 in the third-order RK method is to use Eq. (5.38) with xo
=0,yp=1,and h =0.5 to compute

ki= f(x;,y) = f(0,1) = —-2(0)3 + 12(0)? — 20(0) + 8.5 = 8.5
However, because the ODE is a function of x only, this result (k) has no effect on the next steps to
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compute k, and k3 using Equations (5.39) and (5.40), respectively.
ky= f (xi +hy+ %klh) = —2(0.25)% + 12(0.25)2 — 20(0.25) + 8.5 = 4.21875
ks = f(x; + h,y; — kyh + 2k;h) = —2(0.5)3 + 12(0.5)% — 20(0.5) + 8.5 = 1.25
Using Eq. (5.37) to predict y at x = 0.5, we have
Yirr = Vi +¢ (kg + 4k + k3)h
- y(05) =1 +%(8.5 + 4(4.21875) + 1.25)(0.5) = 3.21875
The exact value of y1 at x = 0.5

y, = y(0.5) = —0.5(0.5)* + 4(0.5)3 — 10(0.5)2 + 8.5(0.5) + 1 = 3.21875

It can be noticed that the predicted value of y1 by the third-order RK method and the exact value

are equal. Thus, the relative error is zero.

To evaluate y2 at x = 1.0 in the third-order RK method, we use Eq. (5.38) with x; =0.5, y; =
3.21875, and h = 0.5 to compute

ky = f(x,y;) = —2(0.5)3 + 12(0.5)2 — 20(0.5) + 8.5 = 1.25

However, because the ODE is a function of x only, this result (k) has no effect on the next steps to

compute k, and k3 using Equations (5.39) and (5.40), respectively.
k,= f (xi +hy + %klh) = —2(0.75)3 + 12(0.75)% — 20(0.75) + 8.5 = —0.59375
ks = f(x; + h,y; — kyh + 2k,h) = —2(1.0)3 + 12(1.0)? — 20(1.0) + 8.5 = —1.50000
Using Eq. (5.37) to predict y at x = 1.0, we have
Yi+1 = Vi +%(k1 +4k; + k3)h
- y(1.0) = 3.21875 + %(1.25 + 4(—0.59375) + (—1.50000))(0.5) = 3.0000
The exact value of y2 at x=1.0
y, = y(1.0) = —0.5(1.0)* + 4(1.0)® — 10(1.0)? + 8.5(1.0) + 1 = 3.0000

Again, it can be observed that the predicted value of y2 by the third-order RK method and the
exact value are equal. Thus, the relative error is zero. Consequently, the third-order RK method is

superior to all the second-order RK methods.
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Example (5.7): Employ the third-order RK method to integrate y’ = 4¢%8¢— 0.5y from7=0 to
1 using a step size of 1 with y(0) = 2. Evaluate the relative error by comparing the results with exact

solution of 6.194631.

Solution:

The first step to evaluate y1 at t = 1.0 is to compute kq, k,, and k3 using Equations (5.38) to
(5.40), respectively, with 7= 0, yo =2, and step size (h) =1

ki= f(t,v) = f(0,2) =4e%°8ti— 05y, =4¢e%8® - 05(2) =3

ky = f (xi+3hyi +3kih) = £(0.5,3.5) = £(0,2) = 4e°©5 — 05 (3.5) = 4.217299

ks = f(x; + h,y; — kyh + 2k,h) = £(1.0,7.4346) = 4e%8 () — 0.5(7.4346) = 5.184864
Using Eq. (5.37) to predict y; at t = 1, we have

Yirr = Vi +5 ey +4ky + k3)h

- y(1.0) =20+ %(3 + 4(4.217299) + 5.184864)(1.0) = 6.175677

The relative error for y1 can be calculated as

Exact Predicted
Yi —Yi
Exact

Vi

X 100 = |""19‘“’31“"'175677 % 100 = 0.306%
6.194631

Relative Error% =

5.2.3.3. Fourth-Order Runge-Kutta Methods

The most popular RK methods are fourth order. As with the second-order approaches, there
are an infinite number of versions. The following is the most commonly used form, and we therefore

call it the classical fourth-order RK method:

1
yi+1 = yi + g(kl + 2k2 + 2k3 + k4)h (541)
where
ki = fCyi) (5.42)
1 1
k,=7f <xi + Eh' Vi + §k1h> (5.43)
1 1
k;=f <xi + Eh' y; + §k2h> (5.44)
ky= f(x; + hy; + ksh) (5.45)

Notice that for ODEs that are a function of x alone, the classical fourth-order RK method is
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similar to Simpson’s 1/3 rule. As depicted in Fig. 5.5, each of the k’s represents a slope. Therefore,

equation (5.41) represents a weighted average of these slopes to arrive at the improved slope.

| |
| ky ! I
| I
| I
| 7! |
| / | |
| ’ | ks |
[ 7| & : [
| _ |
| 7/ S |
ky | =21k ! —0
11 2~ ——— I
T o) |
| B \\ka : |
| ot SN |
e
| ~— I 2
| ! e~ N ky
| |
| : |
I I
i h ;
| ! |
X Xis /2 Xis X

Fig. 5.5 Graphical depiction of the slope estimates comprising the fourth-order RK method.

Example (5.8): Using the classical fourth-order RK method with an initial condition of y(0) = 2,

integrate y' = 4 e%8t — 0.5y from 7 =0 to 1 with a step size of 1. Evaluate the relative error by

comparing the results with exact solution of 6.194631.

Solution:
The first step to evaluate y1 at t = 1.0 is to compute k4, k,, k3, and k4 using Equations (5.42)
to (5.45), respectively, with 7, =0, yy = 2, and step size (h) =1
k= f(t,v) = f(0,2) =4e°8ti— 05y, =4e°8® - 05(2) =3
1

ky = f (xi +5hyi +3kih) = £(05,3.5) = 4°309 — 0,5 (3.5) = 4.217299

ks = f (xi +3hyi +3k;h) = £(0.5,4.10865) = 4¢%8©9) — 0.5 (4.10865) = 3.912974
ky = f(x; + h,y; + k3h) = £(1.0,5.912974) = 4e°8(10 — 0,5 (4.10865) = 5.945677
Using Eq. (5.41) to predict y; at t =1, we have

Yier = Vi +¢ (kg + 2k + 2k + ky)h
- y(1.0) =2.0+ %(3 + 2(4.217299) + 2(3.912974) + 5.945677)(1.0) = 6.201037

The relative error for y1 can be calculated as
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Exact Predicted
Yi —Yi
Exact

Vi

6.194631-6.201037
6.194631

Relative Error % =

X 100 = X 100 = 0.103%
| |

Accordingly, the classical fourth-order RK method is superior to the third-order RK method

presented in the previous section of this chapter.

Example (5.9): Solve the following differential equation from x =0 to x = 0.5 with a step size of 0.5
using the classical fourth-order RK method.

Z—i = —2x3 +12x2 —20x + 85

The initial condition at x = 0 is y = 1. Evaluate the relative error by comparing the result with the

exact value of y(0.5) which is equal to (3.12875).

Solution:

The first step to evaluate y; at x = 0.5 in the classical fourth-order RK method is to use Eq.
(5.42) with xp=0, yo= 1, and h = 0.5 to compute

ki = flxy) = £(0,1) = —2(0)3 + 12(0)2 — 20(0) + 8.5 = 8.5

However, because the ODE is a function of x only, this result (k) has no effect on the next steps to

calculate k,, k3, and k, using Equations (5.43), (5.44), and (5.45), respectively.
k,= f (xi +hy + %klh) = —2(0.25)3 + 12(0.25)% — 20(0.25) + 8.5 = 4.21875
ki= f (xi +hy + %kzh) = —2(0.25)3 + 12(0.25)2 — 20(0.25) + 8.5 = 4.21875

k, = f(x; + h,y; + ksh) = —2(0.5)3 + 12(0.5)? — 20(0.5) + 8.5 = 1.25
Using Eq. (5.41) to predict y1 at x = 0.5, we have

Yi+1 =Yi + %(k1 + 2ky + 2k3 + ky)h

- y(05)=1 +%(8.5 + 2(4.21875) + 2(4.21875) + 1.25)(0.5) = 3.21875

which is equal to the exact value and thus the relative error is zero.

Example (5.10): Use the classical fourth-order Runge-Kutta method with 4 = 0.1 for the solution of

% = 2xy to obtain an approximation to y(1.5) with y(1) = 1. Determine the percentage relative error

if the exact solution is given by y = e* ~1
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Solution:
With xp =1, yp=1, and h = 0.1, the first step to evaluate y; at x = 1.1 in the classical fourth-
order RK method is to use Eq. (5.42) to compute k; as

ky = flopyd) = f(LD) =2xy =2(1)(1) =2

The next steps are to calculate k,, k3, and k4 using Equations (5.43), (5.44), and (5.45), respectively.

ky = f (% +3hy; +§k1h) = £(1.05,1.1) = 2 x; y; = 2(1.05)(L.1) = 2.31

ks= f (xi +=hy; +§k2h) = f(1.05,1.1155) = 2 x; y; = 2(1.05)(1.1155) = 2.3426

ky= f(x;+hy; +ksh) = £(1.1,1.2343) =2 x; y; = 2(1.1)(1.2343) = 2.7154
Using Eq. (5.41) to predict y; at x = 1.1, we have

Yier = yi + 2 (ky + 2z + 2k3 + ky)h

- y(11) =1 +%(2 + 2(2.31) + 2(2.3426) + 2.7154)(0.1) = 1.2337
The exact value of yrat x = 1.1 1s

Vibxae = e L =el¥ "1 =12337

The predicted value for yi is equal to the exact value with zero error. The computation is repeated,

and the results are summarized in in the table below.

_ Absolute Percentage
N yi error relative error
4th Order RK Exact Values |y€,‘xact _ yg’redicted| |(y’Exact — y:’redicted)/ylﬁxacq x 100

1 1 1 0 0
1.1 1.2337 1.2337 0 0
12 1.5527 1.5527 0 0
1.3 1.9937 1.9937 0 0
1.4 2.6116 2.6117 0.0001 0
1.5 3.4902 3.4904 0.0001 0

Example (5.11): Use the Runge-Kutta method of order four and with 2= 0.1 to find an approximate

solution of % = f(x,y) = x> +y atx=0.1. Given that y = —1 when x = 0. Compute the percentage

relative error if the exact solution is given by y = —x? — 2x + e* — 2.
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Solution:
With xy =0, yp= -1, and h = 0.1, the first step to evaluate y; at x = 0.1 in the fourth-order RK

method is to use Eq. (5.42) to compute k; as
ky= fly) = fOO,-1D) =x7 +y; = (02 +(-1) = -1

The next steps are to calculate k,, k3, and k4 using Equations (5.43), (5.44), and (5.45), respectively.
ky=f (xi +hy + %klh) = £(0.05,—1.05) = (0.05)% — 1.05 = —1.0475
ks = f (xi +3hyi +3k;h) = £(0.05,-1.0524) = (0.05)2 — 1.0524 = —1.0549

k, = f(x; + h,y; + ksh) = £(0.1,—1.1055) = (0.1)2 — 1..1055 = —1.0955

Using Eq. (5.41) to predict yrat x = 1.1, we have
1
Yi+1 =Yi + g(k1 + 2ky + 2k3 + ky)h

> y(11) = -1 +§(—1 + 2(—1.0475) + 2(—1.0549) — 1.0955)(0.1) = —1.1050

The exact value of yrat x = 0.1 1s

Vibae = —X2 —2x+e* =2 = —(0.1)2 = 2(0.1) + %1 — 2 = -1.1049

The relative error for y1 can be calculated as

Exact Predicted
Vi —Vi
Exact

Vi

—1.1049—(—1.1050)

== 2 X 100 = 0.009%

Relative Error % =

><100=|

Exercise (5.1):

a) Use (a) Euler’s method and (b) Heun's method to find y(4.4) from the ordinary differential equation

dy 2-y? .
— = 5, bytakingh=02 Takey=1atx=4.

b) Using (a) Midpoint method, (b) Ralston’s method, and (d) Third-order RK method, find the value
of yat x =0.1, 0.2, and 0.3 from the following differential equation % =f(x,y) =xy+y?.

Take the initial condition of y(0) = 1.

¢) Solve the following initial value problem over the interval from 7= 0 to 2 using (a) Euler’s method,
(b) Heun’s method, (¢) Midpoint method, and (d) Fourth-order RK method. Take the initial
condition of y(0) = 1 and a step size (h) = 0.5. Compare all the results by presenting them on the

same table.

%= fEy) =yt* - 11y
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d) Using (a) Euler’s method, (b) Heun’s method, (¢) Ralston’s method, and (d) Third-order RK
method, solve the following initial value problem over the interval from x = 0 to 0.5. Use a step

size (h) = 0.1 and take the initial condition of y(0) = 1. Tabulate all the results for comparison.
d .
d—i =siny
e) Solve the following problem over the interval from x = 0 to 1 using a step size (h) of 0.25 where
y(0) = 1. Display all your results on the same table. Use (a) Euler’s method, (b) Heun’s method,

(¢) Ralston’s method, (d) Third-order RK method, and (e) Fourth-order RK method

dy
== 1+4x0),fy
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Chapter Six - Partial Differential Equations

6.1. Introduction
Given a function u that depends on both x and y, the partial derivative of u with respect to x at

an arbitrary point (x, y) is defined as

ou o oulx 4+ Ax.y) —ulx.y)
= lim

= = 6.1
Ox Ax—0 Ax ©.D
Similarly, the partial derivative with respect to y is defined as
ou u(x.y + Ay) —u(x.
 lim (x.y + Ay) —u(x.y) 62)

dy  ay-0 Ay

An equation involving partial derivatives of an unknown function of two or more independent
variables is called a partial differential equation, or PDE. The order of a PDE is that of the highest-
order partial derivative appearing in the equation. For example, the following two equations are

second- and third-order, respectively.

0%u 0%u
__- __- — 6.3
322 + 2xy 372 +u (6.3)
2%u 0%u
8u=>5 6.4
0x? 0y +x 0y? +ou y (6.4)

A partial differential equation is said to be linear if it is linear in the unknown function and all
its derivatives, with coefficients depending only on the independent variables. For example, the above

two equations are linear, whereas the following two equations are not.

o2u\’ 3u

- = 6.5
<6x2> +66x oy? o (6)
0%u ou
I + qu =X (6.6)

Because of their widespread application in engineering, our treatment of PDEs will focus on
linear, second-order equations. For two independent variables, such equations can be expressed in
the following general form:

d%u d%u d%u

_ 6.7
ax2+Baxay+Cay2+D 0 (6.7)
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where A, B, and C are functions of x and y and D is a function of x, y, u, du/dx, and cu/dy. Depending
on the values of the coefficients of the second-derivative terms A, B, and C, Eq. (6.7) can be classified
into one of three categories shown in Table 6.1. It should be noted that for cases where A, B, and C
depend on x and y, the equation may actually fall into a different category, depending on the location
in the domain for which the equation holds. For simplicity, we will limit the present discussion to

PDEs that remain exclusively in one of the categories.

Table 6.1 Categories into which linear, second-order partial differential equations in two variables
can be classified.

B2—4AC | Category Examples

Laplace equation (steady state with two spatial dimensions)
<0 Elliptic 9°T 9°T

Heat conduction equation (time variable with one spatial dimension)
=0 Parabolic 9T 10T

0x?2 _ a ot

Wave equation (time variable with one spatial dimension)
>0 Hyperbolic 9%y 1 0%y

0x2 2 9t2

6.2. Partial differential equations (PDEs) and Engineering Practice
Each of the categories of partial differential equations in the above table conforms to specific
kinds of engineering problems. The following sections in this chapter will be devoted to deriving

each type of equation for a particular engineering problem context.

Elliptic equations are typically used to characterize steady-state systems. As in the Laplace
equation in the above table, this is indicated by the absence of a time derivative. Thus, these equations
are typically employed to determine the steady-state distribution of an unknown in two spatial

dimensions.

A simple example is the heated plate in Fig. 6.1 a. For this case, the boundaries of the plate are
held at different temperatures. Because heat flows from regions of high to low temperature, the
boundary conditions set up a potential that leads to heat flow from the hot to the cool boundaries. If
sufficient time elapses, such a system will eventually reach the stable or steady-state distribution of
temperature depicted in Fig. 6.1 a. The Laplace equation, along with appropriate boundary

conditions, provides a means to determine this distribution. By analogy, the same approach can be
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employed to tackle other problems involving potentials, such as seepage of water under a dam (Fig.
ploy p gp pag g

6.1 b) or the distribution of an electric field (Fig. 6.1 ¢).

Hot
_____ v e | /
_____________ ;.
Hot Cool —y——73=1 37— 35— 17

Flow line Co(\d\)c
Equipotential
line

Cool Y S S S S S S SSSSSS SSSSSSSSS

Impermeable rock

(a) (b) (c)

Fig. 6.1 Three steady-state distribution problems that can be characterized using elliptic partial
differential equations (PDEs). (a) Temperature distribution on a heated plate, (b) seepage of water
under a dam, and (c) the electric field near the point of a conductor.

In contrast to the elliptic category, parabolic equations determine how an unknown varies in
both space and time. This is manifested by the presence of both spatial and temporal derivatives in
the heat conduction equation from Table 6.1. Such cases are referred to as propagation problems

because the solution “propagates,’” or changes, in time.

A simple example is a long, thin rod that is insulated everywhere except at its end (Fig. 6.2 a).
The insulation is employed to avoid complications due to heat loss along the rod’s length. As was the
case for the heated plate in Fig. 6.1 a, the ends of the rod are set at fixed temperatures. However, in
contrast to Fig. 6.1 a, the rod’s thinness allows us to assume that heat is distributed evenly over its
cross section, that is, laterally. Consequently, lateral heat flow is not an issue, and the problem reduces
to studying the conduction of heat along the rod’s longitudinal axis. Rather than focusing on the
steady-state distribution in two spatial dimensions, the problem shifts to determining how the one-
dimensional spatial distribution changes as a function of time (Fig. 6.2 b). Thus, the solution consists
of a series of spatial distributions corresponding to the state of the rod at various times. Using an
analogy from photography, the elliptic case yields a portrait of a system’s stable state, whereas the
parabolic case provides a motion picture of how it changes from one state to another. As with the
other types of PDEs described herein, parabolic equations can be used to characterize a wide variety

of other engineering problem contexts by analogy.

University of Baghdad — College of Engineering — Mech. Eng. Dept. — 2019/2020 Dr. Wail Sami Sarsam
108


http://cbs.wondershare.com/go.php?pid=5261&m=db

mm Wondershare

Remove Watermark g PDFelement

Numerical Analysis Third Year

Hot Cool

(a)

(b)

Fig. 6.2 (a) A long, thin rod that is insulated everywhere but at its end. The dynamics of the one-
dimensional distribution of temperature along the rod’s length can be described by a parabolic PDE.
(b) The solution, consisting of distributions corresponding to the state of the rod at various times.

The final class of PDEs, the hyperbolic category, also deals with propagation problems.
However, an important distinction manifested by the wave equation in Table 6.1 is that the unknown

is characterized by a second derivative with respect to time. Consequently, the solution oscillates.

The vibrating string in Fig. 6.3 is a simple physical model that can be described with the wave
equation. The solution consists of a number of characteristic states with which the string oscillates.
There are variety of engineering systems that can be characterized by this model such as vibrations

of rods and beams, motion of fluid waves, and transmission of sound and electrical signals.

L,

Fig. 6.3 A taut string vibrating at a low amplitude is a simple physical system that can be
characterized by a hyperbolic PDE.

Prior to the advent of digital computers, engineers relied on analytical or exact solutions of

partial differential equations. However, many physical systems could not be solved directly but had
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to be simplified. Although these solutions are elegant and yield insight, they are limited with respect
to how faithfully they represent real systems, especially those that are highly nonlinear and irregularly
shaped. Using numerical methods, partial differential equations PDEs can be solved with different
categories of approaches such as finite-difference method and finite-element method. Finite-
difference methods are based on approximating the solution at a finite number of points. In contrast,
finite-element methods approximate the solution in pieces, or “elements.” Various parameters are
adjusted until these approximations conform to the underlying differential equation in an optimal
sense. This chapter is devoted to the solution of partial differential equations PDEs using finite-
difference methods.

6.3. Finite-Difference Solutions of Elliptic Equations

Elliptic equations in engineering are typically used to characterize steady-state, boundary value
problems. Laplace's equation and Poisson's equation are the simplest examples of elliptic partial
differential equations and can be used to model a variety of problems. Because of its simplicity and
general relevance to most areas of engineering, we will use a heated plate as our fundamental context
for solving these elliptic PDEs. The plate is insulated everywhere but at its edges, where the
temperature can be set at a prescribed level. The insulation and the thinness of the plate mean that
heat transfer is limited to the x and y dimensions. At steady state, the flow of heat into the element
over a unit time period At must equal the flow out. The two-dimensional steady-state temperature
distribution in a heated plate can be represented by the Laplace equation as

d°T 0°T

— = 6.8
0x? * dy? 0 ©3)

Note that for the case where there are sources or sinks of heat within the two-dimensional

domain, the equation is referred to as the Poisson equation and can be represented as

02T | 97T _ 69)
axz ayz - f(x’y) :

where f(x, y) is a function describing the sources or sinks of heat.

The finite-difference solution is based on treating the plate as a grid of discrete points (Fig.
6.4) and substituting the partial derivatives in Eq. (6.8) with finite-difference representations. The

PDE is transformed into an algebraic difference equation.
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A"

m+1l,n+1
O,n+14—4—+—+—+% I + + e

~i,j+ 1

=i+ 1,)

m+1,0 X

Fig. 6.4 A grid used for the finite-difference solution of elliptic PDEs in two independent variables
such as the Laplace equation.

6.3.1. The Laplacian Difference Equation

Remembering “Numerical Differentiation” from “Chapter Four - Numerical Integration and

Differentiation”, the Central differences based on the grid scheme from Fig. 6.4 are

02T _ Ti+1’j -2 Ti,j + Ti—l,j
ox2 Ax?

(6.10)

and

0°T _ Tijur = 2T+ Tijg (6.11)
ay? Ay? |

which have errors of O[(A(x)?] and O[(Ay)?*], respectively. Substituting these expressions into Eq.
(6.8) gives

Tiy1j—2Tyj+ Tiq N Tijoa —2Tij+ Tijoq b

Ve o (6.12)

For the square grid in from Fig. 6.4, Ax = Ay, and by collection of terms, the equation becomes
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Ti+1,j + Ti—l,j + Ti,j+1 + Ti,j—l - 4Ti,j - 0 (613)

This relationship, which holds for all interior points on the plate, is referred to as the Laplacian

difference equation.

In addition, boundary conditions along the edges of the plate must be specified to obtain a
unique solution. The simplest case is where the temperature at the boundary is set at a fixed value.
This is called a Dirichlet boundary condition. A common alternative boundary condition is the case
where the derivative at the boundary is given. This is commonly referred to as a Neumann boundary

condition.

6.3.1.1. Dirichlet Boundary Condition

When the temperature at the boundary of a heated plate is set at a fixed value, this is called a
Dirichlet boundary condition. Such is the case for Fig. 6.5, where the edges are held at constant

temperatures. For this case and according to Eq. (6.13), a balance for node (1, 1) is,

100°C
(1, 3) (2, 3) (3,3)
® ° ®
(1,2) (2,2) (3,2)
75°C L] ° ® 50°C
(1, 1) (2, 1) (3,1
@ ] ®
0°C

Fig. 6.5 A heated plate where boundary temperatures are held at constant levels. This case s called
a Dirichlet boundary condition.

T21 + TOl + T12 + TlO - 4‘ T11 = 0 (614)

However, To1 =75 and Tio = 0, and therefore, Eq. (6.14) can be expressed as

4‘T11 - T12 - T21 = 75 (615)
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For the other interior points, similar equations can be developed. The result is the following set

of nine simultaneous equations with nine unknowns:

4T, —Ty —Ty = U8

=g By —T12 = 0

—dgy 4Ty T3, =. 90

=T} +4T,, —Ty -1 = 75
=y =g +lp —Ty = 0 (6.16)

—T5 ~lgy, 45 . = =0

=T +4T\z —T53 =175

=715 =T,y +4T,; —T3; =100

—T3 —Ty; +4T3;,= 150

6.3.1.2. The Liebmann Method

Most numerical solutions of the Laplace equation involve systems that are much larger than
Eq. (6.16). For example, a 10-by-10 grid involves 100 linear algebraic equations. Notice that there
are a maximum of five unknown terms per line in Eq. (6.16). For larger-sized grids, this means that
a significant number of the terms will be zero. When applied to such systems, full-matrix elimination
methods waste great amounts of computer memory sforing these zeros. For this reason, approximate
methods provide a possible approach for obtaining solutions for elliptical equations. The most
commonly employed approach is Gauss-Seidel, which when applied to PDEs is also referred to as
Liebmann’s method. In this technique, Eq. (6.13) is solved iteratively forj=1tonandi=1tom

and expressed as

Tyt Timgjt Tijpa + Tija

Ty = 7 (6.17)

Over-relaxation is sometimes employed to accelerate the rate of convergence by applying the

following formula after each iteration:

TN = AT + (1 -2 Ti?jld (6.18)

where T; ;" and Ti?jld are the values of T; ; from the present and the previous iteration, respectively,

‘ew
J

and A is a weighting factor that is set between 1 and 2. As with the conventional Gauss-Seidel
method, the iterations are repeated until the absolute values of all the percent relative errors (¢; ;) fall

below a pre-specified stopping criterion. These percent relative errors are estimated by
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N old
Ti,jew Ti,j .
5i,j New * 100% (619)
Ti,j

Example (6.1): Use Liebmann’s method (Gauss-Seidel) to solve for the temperature of the heated

plate in Fig. 6.5. Iterate until the maximum error falls below 1%.

Solution:
For the first iteration, because all the T; ;’s are initially zero, the values of error will be 100%.

Equation (6.17)ati=1andj=11is

_0+75+0+0

11 4

The computation is repeated for the values ofi=1to 3 and j = 1 to 3 to give

100°C
0+1875+0+0
21 = 2 = 4.69
50+469+0+0 (1, 3) (2,3) (3, 3)
N L J & L ]
T31 == 4 = 1367
(1, 2) (2,2) (3, 2)
0+75+ 0+ 18.75 : : s
Ty, = ; = 23.44 ek . " i
0+23.44 + 0 + 4.69 R an 2N 6
D= =/
4
50 + 7.03 + 0 + 13.67
32 = 2 = 17.68 0°C
_0+75+100+23.44_4961
3.7 4 - 4961 | 39.16 | 51.71
0 +49.61 + 100 + 7.03
Tos = 7 =39.16 2344 | 7.03 | 17.68
50 + 39.16 + 100 + 17.68
Ty = , = 51.71 18.75 4.69 13.67

For the second iteration the results are

63.38 60.51 6191
39.36 26.96 37.13
25.78 11.62 19.83
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Exercise (6.1):

a. Repeat Example (6.1) using over-relaxation with a

value of 1.5 for the weighting factor and iterate until Y T =500 °C

".

the maximum error falls below 1%.

b. The four sides of the square plate shown in figure are | s
(1,2) 2,2)

T=200°C

100 °C
3

kept at constant temperatures. Using finite difference

method to solve the Laplace equation, find the (1,1 2.1

temperature distribution at the four mesh points by

> X

applying Liebmann’s (Gauss-Seidel) method. Make T = 100 °C

two iterations only.

6.3.1.3. Neumann Boundary Condition

The fixed or Dirichlet boundary condition discussed to this point is but one of several types
that are used with partial differential equations. A common alternative is the case where the derivative
is given. This 1s commonly referred to as a Neumann boundary condition. For the heated-plate
problem, this amounts to specifying the heat flux rather than the temperature at the boundary. One
example is the situation where the edge is insulated. In this case, the derivative is zero because

insulating a boundary means that the heat flux (and consequently the gradient) must be zero.

Considering a node (0, j) at the left edge of a heated plate shown in Fig. 6.6 and applying Eq.
(6.13) at the point gives

Tyj+ Toqj+ Tojer+ Tojo1—4To; =0 (6.20)
®To,j+1
o-————4—=
T-M TO:J T‘l,_/
® 75,1

Fig. 6.6 A boundary node (0, j) on the left edge of a heated plate. To approximate the derivative
normal to the edge (that is, the x derivative), an imaginary point (-1, j) is located a distance Ax
beyond the edge.
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Notice that an imaginary point (-1, j) lying outside the plate is required for this equation.
Although this exterior fictitious point might seem to represent a problem, it actually serves as the
vehicle for incorporating the derivative boundary condition into the problem. This is done by

representing the first derivative in the x dimension at (0, j) by the finite divided difference

oT Ty;— Ty,

_ ~ 6.21
ox 2 Ax ( )
which can be solved for
oT
T_LJ‘ — Tle. s 2 A.x a (622)

Now we have a relationship for 77;; that actually includes the derivative. It can be substituted

into Eq. (6.20) to give
oT
2 Tl,j —_ 2 Ax a + T0’j+1 + TO,j—l — 4T0,j = 0 (623)

Thus, we have incorporated the derivative into the balance. Similar relationships can be
developed for derivative boundary conditions at the other edges. For an insulated edge, the

derivative is zero. The following example shows how this is done for the heated plate.

Example (6.2): Repeat the same problem as in Example (6.1), but with the lower edge insulated.

. 100 100 100
Solution: s s :
The general equation to characterize a derivative at the
(1,3) (2,3) (3,3
lower edge (that is, at j = 0) of a heated plate is 59 . . ° ¢ 50
- 1,20 (2,2 (3,2
Ti+1,0 + Ti—l,O +2 Ti,l -2 Ay 5 -4 Ti’() =0 754 L] ° ° $ 50
. D 1,1 21 (31
For an insulated edge, the derivative is zero and the 75 ¢ . . . # 50
equation becomes
(1,00 (2,00 (3,0
S 7777777777770 7777770 777777 20
Ti+1’0 + Ti_1’0 + 2 Ti’1 - 4‘ Ti’() = 0 Insulated

The simultaneous equations for temperature distribution on the plate, shown in the figure above,
with an insulated lower edge can be written in matrix form as
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"4 -1 -2 T B  [95°
-1 4 -1 —2 Ty 0
—1 4 ¢ T30 50
-1 4 -1 =i, T, 7o
=1 -1 4 -1 = T, 0
=] -1 4 -1 =1l )| gy, o 50 ¢
o | 4 -1 —1 T, 7S
=41 —1 4 -1 =4l Ty 0
= = 4 =1 | Ts 50
=1 4 -1 T3 175
| -1 4 —1|| Txn 100
| =l —1 4| | Ty 150
Note that because of the derivative boundary
100 100 100
condition, the matrix is increased to 12 x 12 in contrast - & :

to the 9 x 9 system in Eq. (6.16) to account for the three

’ 754 8344 82.6\ 74.3\ # 50
unknown temperatures along the plate’s lower edge.

These equations can be solved for 754 760% 728% 6hsw g
Ti0=7191 Ta0=6701 Tz39=5954 T . -
T11=7281 T21=6831 Ts31=6057

71.9 67.0 59.5
T12=76.01 T22=7284 T32=064.42 18 777777 50
T13=83.41 T23=82.63 Ts3=7426 i

The temperatures and heat fluxes are displayed in in the figure above. Note that, because the
lower edge is insulated, the plate’s temperature is higher than that obtained in Example (6.1), where

the bottom edge temperature is fixed at zero.

6.4. Finite-Difference Solutions of Parabolic Equations

The previous section dealt with steady-state PDEs. We now turn to the parabolic equations that
are employed to characterize time-variable problems. In a fashion similar to the Laplace equation,
which deals with the two-dimensional steady-state temperature distribution in a heated plate,
conservation of heat can be used to develop a heat balance for the differential element in the long,
thin insulated rod shown in Fig. 6.7. However, rather than examine the steady-state case, the present

balance also considers the amount of heat stored in the element over a unit time period At. The
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resulting equation is the heat-conduction equation and it is an example of parabolic PDEs which is

given as
Hot ] Cool
Fig. 6.7 A thin rod, insulated at all points except at its ends.
2
o _101 (6.24)
0x? «a Ot
k ing that = ) 6.25
nowing that, a_pC (6.25)

where o is referred to as the coefficient of thermal diffusivity (cm?/s), p is the density of the material
(g/cm?), C is the heat capacity of the material [cal/(g . °C)], T is the temperature (°C), and k is the
coefficient of thermal conductivity [cal/(s . cm . °C)]. Both k and o are parameters that reflect how

well the material conducts heat.

Just as with elliptic PDEs, parabolic equations can be solved by substituting finite divided
differences for the partial derivatives. However, in contrast to elliptic PDEs, we must now consider
changes in time as well as in space. Because of their time-variable nature, solutions to these equations
involve a number of new issues, notably stability. This, as well as other aspects of parabolic PDEs,
will be examined in the following sections as we present two fundamental solution approaches,

explicit and implicit schemes.

The fundamental difference between explicit and implicit approximations is depicted In Fig.
6.8. For the explicit form, we approximate the spatial derivative at time level I. Recall that when we
substituted this approximation into the partial differential equation, we obtained a difference equation
with a single unknown T}*1. Thus, we can solve “explicitly” for this unknown. In implicit methods,
the spatial derivative is approximated at an advanced time level I + 1. The resulting difference
equation contains several unknowns. Thus, it cannot be solved explicitly by simple algebraic
rearrangement as was done in explicit methods. Instead, the entire system of equations must be solved
simultaneously. This is possible because, along with the boundary conditions, the implicit

formulations result in a set of linear algebraic equations with the same number of unknowns. Thus,
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the method reduces to the solution of a set of simultaneous equations at each point in time.

>< Grid point involved in time difference
Q Grid point involved in space difference

% AN X N
[+ 1 2N [+ 1 aw; & Y
/ N KX /i I \l/
N XX N /I\
i-1 i i+ 1 i-1 i i+ 1
(a) Explicit (b) Implicit

Fig. 6.8 Fundamental differences between (a) explicit and (b) implicit methods.

As noted previously, explicit finite-difference formulations have problems related to stability.
Implicit methods overcome both this difficulty at the expense of somewhat more complicated
algorithms. Thus, the following sections in this chapter will be focused on the solution of parabolic

PDE: s using explicit scheme.

6.4.1. Explicit Methods

The heat-conduction equation (Eq. (6.24)) requires approximations for the second derivative
in space and the first derivative in time. The second derivative in space is represented in the same
fashion as for the Laplace equation by a centered finite-divided difference:

0°T TH,—2T + T,

oxZ (Ax)? (6.26)

which has an error of O[(Ax)?]. Notice the slight change in notation of the superscripts is used to
denote fime. This is done so that a second subscript can be used to designate a second spatial

dimension when the approach is expanded to two spatial dimensions.

A forward finite-divided difference is used to approximate the time derivative

141 _ gl
‘;_f _ % (627)

which has an error of O(At).
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Substituting Eqs. (6.26) and (6.27) into Eq. (6.24) yields

Ti — 2T} + T/, _ Tt — T}
(Ax)? At

which can be solved for

T = TH+A(TH, 2T+ TL))

a At
(Ax)?

where, A =

Remove Watermark
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(6.28)

(6.29)

This equation can be written for all the interior nodes on the rod. It then provides an explicit

means to compute values at each node for a future time based on the present values at the node and

its neighbors. Notice that this approach is actually a manifestation of Euler’s method for solving

ODE:s. That 1s, if we know the temperature distribution as a function of position at an initial time, we

can compute the distribution at a future time based on Eq. (6.29). A computational molecule for the

explicit method is depicted in Fig. 6.8, showing the nodes that constitute the spatial and temporal

(time-based) approximations.

Example (6.3): Use the explicit method to solve for the temperature distribution of a long, thin rod

with a length of 10 cm and the following values: k =0.49 cal/(s . cm . °C), Ax=2 cm, and At=0.1 s.

At time t = 0, the temperature of the rod is zero and the boundary conditions are fixed for all times at

T(0) =100 °C and T(10) = 50 °C. Note that the rod is made of aluminum with C =0.2174 cal/(g . °C)

and p=2.7 g/em’.

Solution:
k 0.49

Wehave @ = —= —=> _ = 0,835 cm?/s
pC  2.7x02174
A 0.835 X 0,

and LA =21 — 0.020875

Tz T @)

At t=0.1 s for the node at x =2 cm, applying Eq. (6.29) gives the following value:

T = TE+A(Tiy — 2T+ Ty)
T = 04 0.020875[0 — 2 (0) + 100] = 2.0875

At the other interior points, X = 4, 6, and 8 cm, the results are

T4+ = 0+ 0.020875[0 —2(0) +0] = O

T3 = 0+ 0.020875[0 —2(0) +0]= 0
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T} = 0+ 0.020875[50 — 2 (0) + 0] = 1.0438
At t= 0.2 s, the values at the four interior nodes are computed as
TZ = 2.0875 + 0.020875 [0 — 2 (2.0875) + 100] = 4.0878
TZ? = 0+ 0.020875[0 — 2 (0) + 2.0875] = 0.043577
TZ = 0+ 0.020875[ 1.0438 — 2 (0) + 0] = 0.021788

TZ = 1.0438 + 0.020875 [ 50 — 2 (1.0438) + 0] = 2.0439

The computation is continued, and the results at 3-s intervals are depicted in Fig. 6.9. The
general rise in temperature with time indicates that the computation captures the diffusion of heat

from the boundaries into the aluminum rod.

Fig. 6.9 Temperature distribution in a long, thin rod as computed with the explicit method.

6.4.1.1. Convergence and Stability

Convergence means that as Ax and At approach zero, the results of the finite-difference
technique approach the true solution. Stability means that errors at any stage of the computation are
not amplified but are attenuated as the computation progresses. It can be shown that the explicit

method is both convergent and stable if

(Ax)?
a

(6.30)

)
IN
N =
g
=
¢°]

-

(9]
™o
I
>
H
A
N | =

In addition, it should be noted that setting A < 1/2 could result in a solution in which errors do
not grow, but oscillate. Setting A < 1/4 ensures that the solution will not oscillate. 1t is also known

that setting A = 1/6 tends to minimize truncation error.
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Fig. 6.10 is an example of instability caused by violating Eq. (6.30). This plot is for the same
case as in Example 6.3 but with A = 0.735, which is considerably greater than 0.5. As in Fig. 6.10,
the solution undergoes progressively increasing oscillations. This situation will continue to

deteriorate as the computation continues.

T t=6
100
| | | |
X
g =12
100\/\/
0 | | | | |
-
t r=18
0 | | | | -
5
1 t=24
100
0
X
T4
100
0
e

Fig. 6.10 An illustration of instability. Solution of Example 6.3 but with A = 0.735.
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Although satisfaction of Eq. (6.30) will alleviate the instabilities of the sort manifested in Fig.
6.10, it also places a strong limitation on the explicit method. For example, suppose that Ax is halved
to improve the approximation of the spatial second derivative. According to Eq. (6.30), the time step
must be quartered (i.e., the number of time steps must be increased by a factor of 4) to maintain
convergence and stability. Furthermore, the computation for each of these time steps will take twice
as long because halving Ax doubles the total number of nodes for which equations must be written.
Consequently, for the one-dimensional case, halving Ax results in an eightfold increase in the

number of calculations. Thus, the computational load may be large to attain acceptable accuracy.

6.4.1.2. Derivative Boundary Conditions

As was the case for elliptic PDEs, derivative boundary conditions can be similarly incorporated
into parabolic PDEs. For a one-dimensional rod, this necessitates adding two equations to
characterize the heat balance at the end nodes. For example, the node at the left end (i = 0) would be

represented by

Te*t' = To+A(T{ —=2T3+ Ty) 631)

Thus, an imaginary point is introduced at 1 = -1 (recall Fig. 6.6). However, as with the elliptic case,
this point provides a vehicle for incorporating the derivative boundary condition into the analysis.
Using finite divided difference, the derivative boundary condition can be used to eliminate this

imaginary node,

I l {
<6_T> .- T (6.32)
dx /g 2 Ax

which can be solved for

aT \!
T, = TH- 24 (—) 6.33
1 1 X ax ), ( )

Now we have a relationship for Til that actually includes the derivative. It can be substituted

into Eq. (6.31) to give

+1 l l l or :
0

Ox (6.34)
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l
. oT .
For an insulated edge at i = 0, the derivative (—ax) = 0 and equation (6.34) becomes
0

T =Tt+2(2TE —=2T¢) (6.35)

A similar analysis can be used to embed the derivative boundary condition in the equation for

the fifth node (i = 5) (recall Fig. 6.9). The result is

oT \!
T5”1:T51+/1<2T4l—2T51—2Ax<6—>> (6.36)
X/s

For an insulated edge (zero derivative) tor the fifth node (i = 3) (recall Fig. 6.9), equation
(6.36) becomes

TH1=Ti+ 2 (2T —2T) (6.37)

The equations for the derivative boundary condition and the interior nodes are used together

and the entire system can be iterated with a specified time step.

Example (6.4): Use the explicit method to solve for the temperature distribution of a long, thin rod

with a length of 10 cm and the following values: k = 0.49 cal/(s . cm . °C), Ax=2 cm, and At=0.1 s.
At time t = 0, the temperature of the rod is initially at 50 °C and the derivative boundary condition at
x =01s equal to 1 and at x = 10 is equal to 0. Note that the rod is made of aluminum with C = 0.2174
cal/(g . °C) and p=2.7 g/cm®.

Solution:
k .
Wehave @ =——= ——2 _ = (835 cm?/s
pC  2.7%x02174
a At _ 0.835 x0,1 _
and 1= a0 DF = 0.020875
Att=0.1s

For the node at x=0 cm, i = 0, applying Eq. (6.34) gives

+1 l l l or :
0x/,

a1 \!
andusing Ax =2 and (—) = 1, we have
dx 0
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> T{ = T +0.020875 QT — 2T, — 4)

For the interior nodes at x =2,4, 6, and 8 cm, i =1, 2, 3, and 4, applying Eq. (6.29) gives

Til+1 — Til + 1 (Tl.l+1 -2 Tl-l + Tf_l)
- Tt = T! 40020875 (T, —2T! + TL,)

For the node at x =10 cm, i =85, applying Eq. (6.37) gives

THr =T+ 22T —=2TH)

- Tl = T!+0.020875 (2Tf —2T)

The results for some of the early steps along with some later selected values are presented in

the table below.

t x=0 x=2 x=4 XxX=6 x=8 x=10
0 50 50 50 50 50 50
0.1 49917 50 50 50 50 49 917
0.2 49 837 49 998 50 50 49 998 49 837
0.3 4976 49 995 50 50 49 995 4976
0.4 49 686 49 .99 50 50 49 99 49 686
0.5 49615 49 984 50 50 49 984 49 615

200 30 31.8 33.2 342 34.8 35
400 13.3 15.1 16.5 17.5 18.1 18.3
600 -3.401 -1.601 -0.201 0.7988 1.3988 1.5988
800 -20.11 -18.31 -16.91 -15.91 -15.31 -15.11
1000 -36.81 -35.01 -33.61 -32.61 -32.01 -31.81

Notice what is happening. The rod never reaches a steady state, because of the heat loss at the

left end (unit gradient) and the insulated condition (zero gradient) at the right.
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Exercise (6.2):

a. Repeat Example 6.3, but for a time step of At=0.05s.

b. Repeat Example 6.3, but for the case where the condition at x = 10 is a derivative boundary

condition equal to zero.

c. Repeat Example 6.3, but for the case where the condition at x = 0 is a derivative boundary

condition equal to zero.

d. A thinrod of 3 cm length having a thermal diffusivity coefficient (o) of 0.835 cm?/s is initially
kept at a temperature of 0 °C. The rod is insulated at all points except at its ends which are
kept at all times at T(0) =5 °C and T(3) = 10 °C. Use the explicit method to solve for the
temperature distribution in the rod at t = 0.2 second using the following information; Ax = 1

cm, At= 0.1 second, and A = o0 At/Ax?%.

University of Baghdad — College of Engineering — Mech. Eng. Dept. — 2019/2020 Dr. Wail Sami Sarsam
127


http://cbs.wondershare.com/go.php?pid=5261&m=db

mm Wondershare
PDFelement

Remove Watermark g

Numerical Analysis Third Year

References

1. Chapra, S. C., & Canale, R. P. (2015). Numerical methods for engineers. New
Y ork: McGraw-Hill.

2. Dukkipati, R. V. (2010). Numerical methods. New Delhi: New Age International
Ltd.

3. Chapra, S. C. (2018). Applied numerical methods with MATLAB for engineers
and scientists. New York, N.Y: McGraw-Hill Education.

4. Bird, J. O. (2011). Basic engineering mathematics. Amsterdam: Elsevier.

University of Baghdad — College of Engineering — Mech. Eng. Dept. — 2019/2020 Dr. Wail Sami Sarsam
128


http://cbs.wondershare.com/go.php?pid=5261&m=db

	Chapter One - Numerical Errors and Roots of Equations.pdf (p.1-20)
	Chapter Two - System of Linear Algebraic Equations.pdf (p.21-35)
	Chapter Three - Curve Fitting.pdf (p.36-52)
	Chapter Four - Numerical Integration and Differentiation.pdf (p.53-84)
	Chapter Five - Ordinary Differential Equations.pdf (p.85-109)
	Chapter Six - Partial Differential Equations.pdf (p.110)



