Ch1 Infinite Series

(Ch9)

9.1 Sequences

A sequence of numbers is a function whose domain is the set of integer numbers greater than or equal to some integer n_{0}
$a_{n}=a(n)$ for $n \geq n_{0}$
Ex: The sequence defined by $a(n)=\frac{n-1}{n}$
$a(1)=0, a(2)=1 / 2, a(3)=2 / 3, \ldots \ldots a(n)=(n-1) / n$ (the $\mathrm{n}^{\text {th }}$ term)
$a_{1}=0, a_{2}=1 / 2, a_{3}=2 / 3, \ldots \ldots a_{\mathrm{n}}=(n-1) / n$
Ex:
$0,1,2,3, \quad, n-1$,

$$
0,-1 / 2,2 / 3,-3 / 4, \ldots \ldots(-1)^{n+1}\left(\frac{n-1}{n}\right)
$$

$$
\begin{aligned}
& a_{\mathrm{n}}=n-1 \\
& a_{\mathrm{n}}=1 / n \\
& a_{n}=(-1)^{n+1} \frac{1}{n} \\
& a_{n}=(-1)^{n+1}\left(\frac{n-1}{n}\right) \\
& a_{n}=3 \\
& a_{n}=(-1)^{n+1} 3
\end{aligned}
$$

3, 3, 3, 3,............... 3
$3,-3,3,-3, \ldots \ldots \ldots \ldots \ldots . .(-1)^{n+1} 3$

If the sequence approaches a limit L as $n \rightarrow \infty$ (n approaches infinity), then it is convergent, if not it is divergent.

If a sequence a_{n} converges to A as n approaches infinity we write $\lim _{n \rightarrow \infty} a_{n}=A$

Theorems

If $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$
1- $\lim _{n \rightarrow \infty}\left[a_{n}+b_{n}\right]=A+B$
2- $\lim _{n \rightarrow \infty}\left[a_{n}-b_{n}\right]=A-B$
3- $\lim _{n \rightarrow \infty}\left[a_{n} \cdot b_{n}\right]=A B$
4- $\lim _{n \rightarrow \infty}\left[k b_{n}\right]=k B \quad$ (k is any number)
5- $\lim _{n \rightarrow \infty}\left[\frac{a_{n}}{b_{n}}\right]=\frac{A}{B}$

Ex:

- $\lim _{n \rightarrow \infty}\left(\frac{-1}{n}\right)=(-1) \lim _{n \rightarrow \infty} \frac{1}{n}=(-1)(0)=0$
- $\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=\lim (1)-\lim \left(\frac{1}{n}\right)=1-0=1$
- $\lim _{n \rightarrow \infty} \frac{5}{n^{2}}=\lim (5) \lim \left(\frac{1}{n}\right) \lim \left(\frac{1}{n}\right)=(5)(0)(0)=0$
- $\lim _{n \rightarrow \infty} \frac{4-7 n^{6}}{n^{6}+3}=\lim _{n \rightarrow \infty} \frac{4 / n^{6}-7}{1+3 / n^{6}}=\frac{0-7}{1+0}=-7$

Theorem:

If $\lim _{n \rightarrow \infty} a_{n}=L$ and f is a function that is continuous at L then
$\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$

Ex: $a_{n}=\sqrt{\frac{n+1}{n}}$
We know that $\frac{n+1}{n} \rightarrow 1$
Taking $f(x)=\sqrt{x}$
Therefore $\sqrt{\frac{n+1}{n}} \rightarrow f(1)=\sqrt{1}=1$

Theorem:

If $f(x)$ is a function defined for all $x \geq n_{0}$ and $\left\{a_{n}\right\}$ is a sequence such that $a_{n}=f(n)$ when $n \geq n_{0}$

If $\lim _{x \rightarrow \infty} f(x)=L$ then $\lim _{n \rightarrow \infty} a_{n}=L$

Ex: Show that $\frac{\ln (n)}{n} \rightarrow 0$
Let $f(x)=\frac{\ln x}{x}, a_{n}=f(n)$
$\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$ (by applying L'Hopital's rule)
Therefore $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0$

Ex: find $\lim _{n \rightarrow \infty} \frac{2^{n}}{5 n}$
$\lim _{x \rightarrow \infty} \frac{2^{x}}{5 x}=\lim _{x \rightarrow \infty} \frac{2^{x} \ln 2}{5}=\infty$

Limits Arise Frequently

- $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
- $\lim _{n \rightarrow \infty} x^{1 / n}=1$
- $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$
- $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
- $\lim _{n \rightarrow \infty} x^{n}=0$

$$
(|x|<1)
$$

- $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$

Ex: Specify if the sequence is convergent or divergent
$1-\frac{n+(-1)^{n}}{n}=1+\frac{(-1)^{n}}{n} \rightarrow 1 \quad$ convergent
2- $\frac{2 n+1}{1-3 n}=\frac{2+1 / n}{1 / n-3} \rightarrow-\frac{2}{3} \quad$ convergent
3-1+(-1) ${ }^{\mathrm{n}}$ divergent
4- $\frac{10^{n+1}}{10^{n}}=10 \frac{10^{n}}{10^{n}}=10 \quad$ convergent
Ex: Find the limit of
$1-\left(-\frac{1}{2}\right)^{n} \rightarrow 0$
4- $\sqrt{\frac{2 n}{n+1}}$
Let $f(x)=\sqrt{x}$
$\frac{2 n}{n+1}=\frac{2}{1+1 / n} \rightarrow 2$
$\lim f\left(\frac{2 n}{n+1}\right)=f(2)=\sqrt{2}$
$5-\sin (\pi / 2+1 / n)$
Let $f(x)=\sin (x)$
$\lim _{n \rightarrow \infty}\left(\frac{\pi}{2}+\frac{1}{n}\right)=\frac{\pi}{2}$
$\lim _{n \rightarrow \infty} f\left(\frac{\pi}{2}+\frac{1}{n}\right)=f(\pi / 2)=\sin (\pi / 2)=1$
$6-\ln (n)-\ln (n+1)=\ln \left(\frac{n}{n+1}\right)$
Let $f(x)=\ln x$
$\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$
$\lim f\left(\frac{n}{n+1}\right) \rightarrow f(1)=\ln (1)=0$

7- $\left(1+\frac{7}{n}\right)^{n}$
Compare to $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$
$\left(1+\frac{7}{n}\right)^{n} \rightarrow e^{7}$
$8-\frac{(n+1)!}{n!}=\frac{(n+1) n!}{n!}=n+1 \rightarrow \infty$ $(6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=6 \cdot 5!)$

9- $\sqrt[n]{n^{2}}=\sqrt[n]{n \cdot n}=\sqrt[n]{n} \sqrt[n]{n} \rightarrow(1)(1)=1$

9.2 Infinite Series

Definition:
For the sequence $\left\{a_{n}\right\}$
$a_{1}+a_{2}+a_{3}+\ldots . .+a_{n}+\ldots . \quad$ is infinite series
a_{n} is the $n^{\text {th }}$ term
$S_{1}=a_{1}$
$S_{2}=a_{1}+a_{2}$
$S_{3}=a_{1}+a_{2}+a_{3}$
!
$S_{n}=a_{1}+a_{2}+a_{3}+\ldots . .+a_{n} \quad$ Partial Sum
$S_{1}, S_{2}, S_{3}, \ldots \ldots . S_{\mathrm{n}} \quad$ is a sequence of partial sums
The Series converges if
$\sum_{n=1}^{\infty} a_{n}=L \quad$ or $\quad \lim _{n \rightarrow \infty} S_{n}=L$

The Geometric Series

$a+a r+a r^{2}+a r^{3}+\ldots \ldots+a r^{\mathrm{n}-1}+\ldots \ldots=\sum_{n=1}^{\infty} a r^{n-1}$
or
$a+a r+a r^{2}+a r^{3}+\ldots \ldots+a r^{\mathrm{n}-1}+\ldots \ldots=\sum_{n=0}^{\infty} a r^{n}$
$S_{n}=a+a r+a r^{2}+a r^{3}+\ldots \ldots .+a r^{n-1}$
$r S_{n}=a r+a r^{2}+a r^{3}+a r^{4}+\ldots \ldots .+a r^{n}$
Subtract (2) from (1)
$S_{n}-r S_{n}=a-a r^{n}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad r \neq 1$
If $|r|<1$ then $r^{n} \rightarrow 0$, then the geometric series converges to $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$

Ex: Determine whether $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges, if so, find the sum.
From partial fractions, we know
$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$

We can write the partial sum
$S_{k}=\sum_{n=1}^{k} \frac{1}{n(n+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots .+\frac{1}{k \cdot(k+1)}$
$S_{k}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots .+\left(\frac{1}{k}-\frac{1}{k+1}\right)$
$S_{k}=1-\frac{1}{k+1}$
(Telescopic Sum)
$\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(1-\frac{1}{1+k}\right)=1$
Then the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1 \quad$ (convergent)

Divergent Series

$\sum_{n=1}^{\infty} \frac{n+1}{n}=\frac{2}{1}+\frac{3}{2}+\frac{4}{3}+\ldots .+\frac{n+1}{n}+\ldots .$. Divergent $\left(\lim _{n \rightarrow \infty} a_{n}=1\right)$
$\sum_{n=1}^{\infty}(-1)^{n+1}=1-1+1-1+1-\ldots . .+1-\ldots .$. Divergent $\left(\lim _{n \rightarrow \infty} a_{n}\right.$ does not exist $)$

The $\boldsymbol{n}^{\text {th }}$ Term Test for Divergence

If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ fails to exist, then
$\sum_{n=1}^{\infty} a_{n}$ diverges

Necessary Condition for Convergence
If $\sum_{n=1}^{\infty} a_{n}$ converges $\underset{\text { then }}{\Rightarrow}, a_{n} \rightarrow 0$

Theorems

If $\sum a_{n}=A$ and $\sum b_{n}=B$, then
$\sum\left(a_{n}+b_{n}\right)=A+B$
(Sum Rule)
$\sum\left(a_{n}-b_{n}\right)=A-B$
(Difference Rule)
$\sum\left(k a_{n}\right)=k A$
(Constant Multiple Rule)

Ex:

1- $\sum_{n=1}^{\infty} \frac{4}{2^{n-1}}=4 \sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n-1}=4 \frac{1}{1-1 / 2}=8$
2- $\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}=\sum_{n=1}^{\infty}\left(\frac{3^{n-1}}{6^{n-1}}-\frac{1}{6^{n-1}}\right)$
$=\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n-1}-\sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n-1}=\frac{1}{1-1 / 2}-\frac{1}{1-1 / 6}=2-\frac{6}{5}=\frac{4}{5}$
$3-\sum_{n=0}^{\infty} \frac{1}{4^{n}}=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}=\frac{1}{1-1 / 4}=\frac{4}{3}$
4- $\sum_{n=2}^{\infty} \frac{1}{4^{n}}$, let $k=n-2 \Rightarrow n=k+2$

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{1}{4^{n}}=\sum_{k=0}^{\infty} \frac{1}{4^{k+2}}=\sum_{k=0}^{\infty} \frac{1}{4^{2} \cdot 4^{k}}=\sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{2}\left(\frac{1}{4}\right)^{k} \\
& =\frac{1}{4^{2}} \cdot \frac{1}{1-1 / 4}=\frac{1}{4^{2}} \cdot \frac{4}{3}=\frac{1}{12}
\end{aligned}
$$

Or
$\sum_{n=2}^{\infty} \frac{1}{4^{n}}=1+\frac{1}{4}+\sum_{n=2}^{\infty} \frac{1}{4^{n}}-1-\frac{1}{4}=\sum_{n=0}^{\infty} \frac{1}{4^{n}}-1-\frac{1}{4}=\frac{1}{1-1 / 4}-1-\frac{1}{4}$
$=\frac{4}{3}-1-\frac{1}{4}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$
5- $\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}+\frac{1}{3^{n}}\right)=5 \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}=5 \frac{1}{1-1 / 2}+\frac{1}{1-1 / 3}$
$=10+\frac{3}{2}=\frac{23}{2}$
$6-\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}+\frac{(-1)^{n}}{5^{n}}\right)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{-1}{5}\right)^{n}=\frac{1}{1-1 / 2}+\frac{1}{1+1 / 5}$
$=2+\frac{5}{6}=\frac{17}{6}$
$\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{1-\frac{1}{\sqrt{2}}}=\frac{\sqrt{2}}{\sqrt{2}-1}$
$\sum_{n=1}^{\infty} \ln \frac{1}{n}, a_{n}=\ln \frac{1}{n}=-\ln n$
$\lim _{n \rightarrow \infty} a_{n} \rightarrow-\infty$ Divergent
$\sum_{n=0}^{\infty} \cos n \pi=1-1+1-1+\ldots$. Divergent
$\sum_{n=0}^{\infty} \frac{\cos n \pi}{5^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{5^{n}}=\sum_{n=0}^{\infty}\left(\frac{-1}{5}\right)^{n}=\frac{1}{1+\frac{1}{5}}=\frac{5}{6}$
$\sum_{n=0}^{\infty} e^{-2 n}=\sum_{n=0}^{\infty}\left(e^{-2}\right)^{n}=\frac{1}{1-e^{-2}}=\frac{e^{2}}{e^{2}-1}$
$\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n}, a_{n}=\left(1-\frac{1}{n}\right)^{n}$
$\lim _{n \rightarrow \infty} a_{n}=e^{-1} \neq 0$ Divergent

9.3 Series without Negative Terms: Comparison and Integration Tests

Theorem

A nondecreasing sequence converges if and only if its terms are bounded from above. If all terms are less than or equal to M then the limit (L) of the sequence is less than or equal to $M(L \leq M)$

Ex: The series
$\sum_{n=0}^{\infty} \frac{1}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots$.
Converges because all of its terms are positive and less than or equal to the corresponding term of

$$
\begin{aligned}
& 1+\sum_{n=0}^{\infty} \frac{1}{2^{n}}=1+1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots . . \\
& \sum_{n=0}^{\infty} \frac{1}{n!}<1+\sum_{n=0}^{\infty} \frac{1}{2^{n}}=1+\frac{1}{1-1 / 2}=3
\end{aligned}
$$

Then the upper limit of our series is 3 . This does not mean that our series converges to 3 . Actually it converges to $e=2.718281828459045$

Ex: The Harmonic Series
$\sum_{1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots . .+\frac{1}{n}+\ldots$
Can be written as
$=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\ldots .+\frac{1}{16}\right)+\ldots$.
$>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\left(\frac{1}{16}+\frac{1}{16}+\ldots .+\frac{1}{16}\right)+\ldots$.
$=>\frac{2}{4}=\frac{1}{2} \quad>\frac{4}{8}=\frac{1}{2} \quad>\frac{8}{16}=\frac{1}{2}$
In other words
$\sum_{n=1}^{\infty} \frac{1}{n}>1+\frac{1}{2}+\frac{2}{4}+\frac{4}{8}+\ldots .+\frac{2^{n}}{2^{n+1}}+\ldots$.
$\sum_{n=1}^{\infty} \frac{1}{n}>1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\ldots .+\frac{1}{2}+\ldots . \rightarrow \infty$
$\sum_{n=1}^{\infty} \frac{1}{n}$ diverges

Comparison Test (Term-by-Term Comparison) for series of Nonnegative Terms
1- If $\sum c_{n}$ is a convergent series and $a_{n}<c_{n}$ for some $n>n_{0}$ then $\sum a_{n}$ converges
2- If $\sum d_{n}$ is a divergent series and $a_{n}>d_{n}$ for some $n>n_{0}$ then $\sum a_{n}$ diverges
Our standard series are
1- Geometric series with $|r|<1$ convergent
2- Harmonic series divergent
3- Any series with $\lim _{n \rightarrow \infty} a_{n} \neq 0$ divergent

The integral Test

Let $a_{n}=f(n)$ where $f(x)$ is a continuous, positive, decreasing function of x for all $x \geq 1$ then the series $\sum a_{n}$ and the integral $\int_{1}^{\infty} f(x) d x$ both converge or diverge both

Ex: The p-Series (\mathbf{p} is a real constant)

$\sum_{1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots .+\frac{1}{n^{p}}+\ldots$.
Let $f(x)=\frac{1}{x^{p}}, p>1 \Rightarrow p-1>0=>1-p<0$
$\int_{1}^{\infty} x^{-p} d x=\left.\lim _{b \rightarrow \infty} \frac{x^{-p+1}}{-p+1}\right|_{1} ^{b}=\frac{1}{1-p} \lim _{b \rightarrow \infty}\left(b^{1-p}-1\right)=\frac{1}{1-p} \lim _{b \rightarrow \infty}\left(\frac{1}{b^{p-1}}-1\right)=\frac{1}{p-1}$
Which is finite, hence the p-series converges for $p>1$
If $\mathrm{p}=1$ we have
$\sum_{1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots .+\frac{1}{n}+\ldots$.
The harmonic series which we know it diverges or we can use the integral test
$\int_{1}^{\infty} \frac{1}{x} d x=\left.\lim _{b \rightarrow \infty} \ln x\right|_{1} ^{b}=\infty$
Since the integral diverges, the series diverges
If $\mathrm{p}<1$, by comparison test we find that each term is greater that the harmonic series terms which is divergent
$\frac{1}{2^{p}}>\frac{1}{2}, \frac{1}{3^{p}}>\frac{1}{3}, \frac{1}{4^{p}}>\frac{1}{4} \ldots . . \frac{1}{n^{p}}>\frac{1}{n}$
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges for $\mathrm{p}<1$

The Limit Comparison Test

If $a_{n} \geq 0$ for $n>n_{0}$ and there is a convergent series Σc_{n} such that $c_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{c_{n}}<\infty$ (finite positive number)
Then Σa_{n} is convergent
If $a_{n} \geq 0$ for $n>n_{0}$ and there is a divergent series $\sum d_{n}$ such that $d_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{d_{n}}<\infty$ (finite positive number)
Then Σa_{n} is divergent
Ex: a- $\sum_{n=2}^{\infty} \frac{2 n}{n^{2}-n+1} \quad$ b- $\sum_{n=2}^{\infty} \frac{2 n^{3}+100 n^{2}+1000}{(1 / 8) n^{6}-n+2}$
a- For large values of n the series behaves like $\sum \frac{2 n}{n^{2}}=\sum \frac{2}{n}$, then we can compare our series with the divergent harmonic series
$\left.\lim _{n \rightarrow \infty}\left(\frac{2 n}{n^{2}-n+1}\right) /(1 / n)\right)=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}-n+1}=2$
The series is divergent
b- For large values of n the series behaves like $\sum \frac{2 n^{3}}{(1 / 8) n^{6}}=16 \sum \frac{1}{n^{3}}$, then we can compare is with the series $1 / n^{3}$ which we know it is convergent.

$$
\lim _{n \rightarrow \infty}\left(\frac{2 n^{3}+100 n^{2}+1000}{(1 / 8) n^{6}-n+2}\right)\left(\frac{1}{n^{3}}\right)=\lim _{n \rightarrow \infty}\left(\frac{2 n^{6}+100 n^{5}+1000 n^{3}}{(1 / 8) n^{6}-n+2}\right)=2 /(1 / 8)=16
$$

The series is convergent because $\sum \frac{1}{n^{3}}$.is a p-series with $p=3>1$

Exercises 9.3 Which series converges and which diverges

1- $\sum_{n=1}^{\infty} \frac{1}{10^{n}}$ Converges, geometric series with $r=1 / 10<1$
2- $\sum_{n=1}^{\infty} \frac{n}{n+1}$ Diverges by the $n^{\text {th }}$ term test for divergence $a_{n} \rightarrow 1 \neq 0$
3- $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{2^{n}}$ Converges because $\frac{\sin ^{2} n}{2^{n}}<\frac{1}{2^{n}}$, (term-by-term comparison)

10- $\sum_{n=1}^{\infty} \frac{-2}{n+1}$ By limit comparison test with $1 / n$
$\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}\right) /(1 / n)=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$ diverges
15- $\sum_{1}^{\infty} \frac{1}{\sqrt{n^{3}+2}}<\sum_{1}^{\infty} \frac{1}{n^{1.5}}$ convergent
16- $\sum_{2}^{\infty} \frac{\sqrt{n}}{\ln n}$
$f(x)=\frac{\sqrt{x}}{\ln x}, \lim _{x \rightarrow \infty} \frac{\sqrt{x}}{\ln x}=\lim _{x \rightarrow \infty} \frac{1 /(2 \sqrt{x})}{(1 / x)}=\lim _{x \rightarrow \infty} \frac{x}{2 \sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{2}=\infty$
$\lim _{n \rightarrow \infty} a_{n}=\infty \neq 0$ ($n^{\text {th }}$ term test) divergent
18- $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}$
Use limit comparison test with the divergent series $\sum \frac{1}{n}$
$\lim _{n \rightarrow \infty}\left(\frac{1}{n^{n} \sqrt{n}}\right)\left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{n}}=1$ divergent series

Series with Nonnegative terms: Ratio and Root Test
 The Ratio Test

Let $\sum a_{n}$ be a series with positive terms and suppose
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho$ Then
1- The series converges if $\rho<1$
2- The series diverges if $\rho>1$
3- The test fails if $\rho=1$

Ex:

$\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}=\sum_{n=1}^{\infty} \frac{n!n!}{(2 n)!}$,
$a_{n+1}=\frac{(n+1)!(n+1)!}{(2 n+2)!}$
$\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!(n+1)!(2 n)!}{n!n!(2 n+2)!}=\frac{(n+1) n!(n+1) n!(2 n)!}{n!n!(2 n+2)(2 n+1)(2 n)!}=\frac{(n+1)}{2(2 n+1)}$
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)}{2(2 n+1)}=1 / 4$ the series is convergent

The $\mathbf{n}^{\text {th }}$ Root Test

Let $\Sigma \mathrm{a}_{\mathrm{n}}$ be a series with an ≥ 0 for $\mathrm{n} \geq \mathrm{no}$ and suppose that $\sqrt[n]{n} \rightarrow \rho$. Then
1- The series converges if $\rho<1$
2- The series diverges if $\rho>1$
3- The test fails if $\rho=1$
Ex: $a_{n}=\frac{n^{2}}{2^{n}}$
$\sqrt[n]{a_{n}}=\sqrt[n]{\frac{n^{2}}{2^{n}}}=\frac{\sqrt[n]{n} \sqrt[n]{n}}{2} \rightarrow 1 / 2$ the series is convergent
$\mathbf{E x}: a_{n}=\frac{e^{n}}{n^{10}}$
$\sqrt[n]{a_{n}}=\sqrt[n]{\frac{e^{n}}{n^{10}}}=\frac{\sqrt[n]{e^{n}}}{(\sqrt[n]{n})^{10}}=\frac{e}{(1)^{10}}=e>1$ the series is divergent

Exercises 9.4

2- $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$
By ratio test
$\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!}{10^{n+1}} \cdot \frac{10^{n}}{n!}=\frac{(n+1) n!}{10 \cdot 10^{n}} \cdot \frac{10^{n}}{n!}=\frac{n+1}{10}$ divergent
$\lim _{n \rightarrow \infty} \frac{n+1}{10}=\infty$ divergent

4- $\sum_{n=1}^{\infty} n^{2} e^{-n}$
By $n^{\text {th }}$ root test
$\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{n^{2} e^{-n}}=e^{-1} \lim _{n \rightarrow \infty} \sqrt[n]{n} \sqrt[n]{n}=e^{-1}(1)(1)=e^{-1}<1 \Rightarrow$ convergent

9- $\sum_{n=1}^{\infty}\left(1-\frac{3}{n}\right)^{n}$
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{3}{n}\right)^{n}=e^{-3} \neq 0 \Rightarrow$ divergent

10- $\sum_{n=1}^{\infty}\left(1-\frac{1}{n^{2}}\right)^{n}$
$a_{n}=\left(1-\frac{1}{n^{2}}\right)^{n}=\left(1-\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right)^{n} \rightarrow e^{-1} e^{1}=1 \Rightarrow$ divergent

11- $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
$\ln (n)>1 \Rightarrow \frac{\ln n}{n}>\frac{1}{n} \Rightarrow$ divergent

12- $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n^{2}}\right)=\sum_{n=1}^{\infty} \frac{1}{n}-\sum_{n=1}^{\infty} \frac{1}{n^{2}} \Rightarrow$ divergent

14- $\sum_{n=1}^{\infty} \frac{n \ln n}{2^{n}}$
$(\ln n<n) \times \frac{n}{2^{n}}=\frac{n l n}{2^{n}}<\frac{n^{2}}{2^{n}}$
By $\mathrm{n}^{\text {th }}$ root test of the right-hand-side
$\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{2}}{2^{n}}}=1 / 2<1 \Rightarrow$ convergent
By the comparison test the series is convergent
$20 \sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ using ratio test
$\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!}{(n+1)^{(n+1)}} \cdot \frac{n^{n}}{n!}=\frac{(n+1) n!}{(n+1)(n+1)^{n}} \cdot \frac{n^{n}}{n!}=\frac{n^{n}}{(n+1)^{n}}=\left(\frac{n}{n+1}\right)^{n}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}}$
$\rightarrow \frac{1}{e}=e^{-1}$ convergent

22- $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{2}}$
$\frac{1}{(\ln n)^{2}}>\frac{1}{n \ln n}$
Let $f(x)=\frac{1}{x \ln x}$
$\int_{2}^{\infty} \frac{d x}{x \ln x}=\left.\ln (\ln x)\right|_{2} ^{\infty}=\infty$

Then $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges

Then $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{2}}$ divergent by comparison test

9.5 Alternating Series

The alternating series Theorem
The Series
$\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots \ldots$.
converges if all three of the following conditions are satisfied
1- $a_{n}>0$ for all n.
2- $a_{n+1} \leq a_{n}$ for $n>n_{o}$.
3- $\lim _{n \rightarrow \infty} a_{n}=0$

Ex: The alternating harmonic series
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$
1- $a_{n}=\frac{1}{n}>0$
2- $a_{n+1}=\frac{1}{n+1}<\frac{1}{n}=a_{n}$
3- $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
This is a convergent series.

Definition

A series Σa_{n} converges absolutely (absolutely convergent) if the corresponding series of absolute values $\Sigma\left|a_{n}\right|$ is convergent.

A series that converges but does not converge absolutely converges conditionally.

Absolute Convergence Theorem

If $\Sigma\left|a_{n}\right|$ converges then Σa_{n} converges

Ex:

$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\cdots$
The corresponding series of absolute values
$\sum_{n=1}^{\infty}\left|(-1)^{n+1} \frac{1}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots$
is a p-series with $p=2>1$, therefore, it converges absolutely, therefore
$\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}$ is convergent

Alternating p-series

$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}=1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\cdots$
When p is a positive constant then $a_{n}=\frac{1}{n^{p}}$
1- $a_{n}=\frac{1}{n^{p}}>0$
2- $\frac{1}{(n+1)^{p}}<\frac{1}{n^{p}}$
3- $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$
Therefore
$\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{p}}$, is a convergent series $p>0$
If $p>1$ the series converges absolutely
If $p \leq 1$ the series converges conditionally

Exercises 9.5

Show if the series is absolutely convergent, conditionally convergent or divergent.
2- $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln n}$
This is an alternating series with $a_{n}=\frac{1}{\ln n}$
$a_{n}=\frac{1}{\ln n}>0$
$\frac{1}{\ln (n+1)}<\frac{1}{\ln n}$
$\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0$
Therefore, it is a convergent harmonic series. But the series
$\sum_{n=2}^{\infty}\left|(-1)^{n} \frac{1}{\ln n}\right|=\sum_{n=2}^{\infty} \frac{1}{\ln n}$ is divergent
Because $\frac{1}{\ln n}>\frac{1}{n}$
Therefore the series $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln n}$ is conditionally convergent.

6- $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\ln n}{n}$
This is a harmonic series with $a_{n}=\frac{\ln n}{n}$
$a_{n}=\frac{\ln n}{n}>0$
$\frac{\ln (n+1)}{n+1}<\frac{\ln n}{n}$
$\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$
$\lim _{n \rightarrow \infty} \frac{\ln x}{x}=\lim _{n \rightarrow \infty} \frac{1 / x}{1}=0$
Therefore, it is a convergent harmonic series. But the series
$\sum_{n=1}^{\infty}\left|(-1)^{n+1} \frac{\ln n}{n}\right|=\sum_{n=1}^{\infty} \frac{\ln n}{n}$ is divergent
Because $\frac{\ln n}{n}>\frac{1}{n}$
Therefore, the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\ln n}{n}$ is conditionally convergent.

12- $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}$ converges conditionally (show the details)

16- $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}$
This is not a harmonic series because the term $\frac{\sin n}{n^{2}}$ is not always positive. By applying the absolute convergence theorem
$\left|(-1)^{n} \frac{\sin n}{n^{2}}\right|=\left|(-1)^{n}\right| \frac{|\sin n|}{\left|n^{2}\right|}=\frac{|\sin n|}{n^{2}}<\frac{1}{n^{2}} \quad(p$-series with $p=2>1)$
Therefore
$\sum_{n=1}^{\infty}\left|(-1) \frac{\sin n}{n^{2}}\right|$ is convergent therefore
$\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}}$ is absolutely convergent

33- $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n \sqrt{n}}$

$$
\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n \sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3 / 2}}
$$

This is a harmonic series with $a_{n}=\frac{1}{n^{3 / 2}}$
$a_{n}=\frac{1}{n^{3 / 2}}>0$
$\frac{1}{(n+1)^{3 / 2}}<\frac{1}{n^{3 / 2}}$
$\lim _{n \rightarrow \infty} \frac{1}{n^{3 / 2}}=0$
The harmonic series is convergent, but the series
$\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n^{3 / 2}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ is a p-series with $p=\frac{3}{2}>1$ which is a convergent series
Therefore the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3 / 2}}$ is absolutely convergent.

9.6 Power Series

A power series is a series of the form
$\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots+c_{n} x^{n}+\cdots$
Or
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots+c_{n}(x-a)^{n}+\cdots$
Where a is the center of the series and $c_{0}, c_{1}, c_{2}, \ldots$ are the coefficients.

Ex: the geometric series is a special case of the power series with all coefficients equal to 1.
$\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\cdots$
It converges to $\frac{1}{1-x}$ for $|x|<1$

The Radius and interval of convergence

The series of the form
$\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$
Can have either of the following behaviors
1- The series converges at a and diverges elsewhere.
2- There is a positive number h such that the series diverges for $|x-a|>h$ but converges absolutely for $|x-a|<h$. The series may or may not converge at the endpoints $x=a+h$ and $x=a-h$.

3- The series converges for all values of x.

In case \#2, the set of points at which the series converges is called the Interval of Convergence and the value of \boldsymbol{h} is called the radius of convergence.

Ex:

For what values of x do the following series converge or diverge. (Find the interval of convergence of the following series.)
а) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots$

By applying the absolute convergence theorem, we test the convergence of the corresponding series with absolute values $\Sigma\left|a_{n}\right|$.
$\left|a_{n}\right|=\left|(-1)^{n+1} \frac{x^{n}}{n}\right|=\frac{|x|^{n}}{n}$
$\left|a_{n+1}\right|=\frac{|x|^{n+1}}{n+1}$
$\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{|x|^{n+1} /(n+1)}{|x|^{n} / n}=|x| \lim _{n \rightarrow \infty} \frac{n}{n+1}=|x|<1$
The series converges absolutely for $|x|<1 \Rightarrow-1<x<1$.
Now we have to repeat the test at the endpoints of the interval
At $x=1$:
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$
This is a convergent alternating harmonic series.

At $x=-1$:
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(-1)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{2 n+1}}{n}=\sum_{n=1}^{\infty} \frac{(-1)\left((-1)^{2}\right)^{n}}{n}=(-1) \sum_{n=1}^{\infty} \frac{1}{n}$
This is a divergent harmonic series.
Therefore the interval of convergence is $-1<x \leq 1$.
b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{2 n-1}}{2 n-1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots$
$\left|a_{n}\right|=\left|(-1)^{n+1} \frac{x^{2 n-1}}{2 n-1}\right|=\frac{|x|^{2 n-1}}{2 n-1}$
$\left|a_{n+1}\right|=\frac{|x|^{2(n+1)-1}}{2(n+1)-1}=\frac{|x|^{2 n+1}}{2 n+1}$
$\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{|x|^{2 n+1} /(2 n+1)}{|x|^{2 n-1} /(2 n-1)}=|x|^{2} \lim _{n \rightarrow \infty} \frac{2 n-1}{2 n+1}=|x|^{2}<1$
The series converges absolutely for $|x|^{2}<1 \Rightarrow-1<x<1$.
At $x=1$:
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n-1}$
This is an alternating series with
$\frac{1}{2 n-1}>0$
$\frac{1}{2(n+1)-1}=\frac{1}{2 n+1}<\frac{1}{2 n-1}$
$\lim _{n \rightarrow \infty} \frac{1}{2 n-1}=0$
Therefore the series is convergent at $x=1$
At $x=-1$
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(-1)^{2 n-1}}{2 n-1}=\sum_{n=1}^{\infty}(-1)^{n} \frac{(-1)^{2 n}}{2 n-1}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2 n-1}$
This is also an alternating series that converge as above.
Therefore the series is convergent for $-1 \leq x \leq 1$
c) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
$\left|a_{n}\right|=\left|\frac{x^{n}}{n!}\right|=\frac{|x|^{n}}{n!}$
$\left|a_{n+1}\right|=\frac{|x|^{n+1}}{(n+1)!}$
$\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{|x|^{n+1} /(n+1)!}{|x|^{n} / n!}=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1}=0<1$
The series converges for all values of x.
d) $\sum_{n=0}^{\infty} n!x^{n}=1+x+2!x^{2}+3!x^{3}+\ldots$
$\left|a_{n}\right|=\left|n!x^{n}\right|=n!|x|^{n}$
$\left|a_{n+1}\right|=\left|(n+1)!x^{n+1}\right|=(n+1)!|x|^{n+1}$
$\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{(n+1)!|x|^{n+1}}{n!|x|^{n}}=|x| \lim _{n \rightarrow \infty}(n+1)=\infty>1$
The series diverges for all values of $x \neq 0$.

Exercises 9.6

3- $\sum_{n=0}^{\infty}(-1)^{n}(x+1)^{n}$
This is a power series and a geometric series Σr^{n}
$a_{n}=(-1)^{n}(x+1)^{n}=(-(x+1))^{n}=r^{n}$
It converges for $|r|<1 \Rightarrow$
$|-(x+1)|<1 \Rightarrow|x+1| \Rightarrow-1<x+1<1 \Rightarrow-2<x+<0$
The series is divergent at -2 and 0 .

5- $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{10^{n}}$
This is a geometric series and it can be written in the form
$\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{10^{n}}=\sum_{n=0}^{\infty}\left(\frac{x-2}{10}\right)^{n}=\sum_{n=0}^{\infty} r^{n}$
The series is convergent for $|r|=\left|\frac{x-2}{10}\right|<1 \Rightarrow$
$-1<\frac{x-2}{10}<1 \Rightarrow-10<x-2<10 \Rightarrow-8<x<12$

17- $\sum_{n=1}^{\infty} \frac{x^{n}}{n \sqrt{n}}$
$\left|a_{n}\right|=\left|\frac{x^{n}}{n \sqrt{n}}\right|=\frac{|x|^{n}}{n^{3 / 2}}$
$\left|a_{n+1}\right|=\frac{|x|^{n+1}}{(n+1)^{3 / 2}}$
$\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{n^{3 / 2}|x|^{n+1}}{(n+1)^{3 / 2}|x|^{n}}=|x| \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)=|x|<1$
The series is convergent for $-1<x<1$
At $x=1$:
$\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$

This is a p-series with $\mathrm{p}=3 / 2>1 \Rightarrow$ convergent
At $x=-1$:
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3 / 2}}$
This is an alternating p -series \Rightarrow convergent
Therefore, the series is convergent for $-1 \leq x \leq 1$

Taylor Series and McLaurin Series

Let f be a function with derivatives of all order throughout some interval containing a as interior, then the Taylor Series generated by f at a is
$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots$
And the Mclaurin series generated by f is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots
$$

