
1 

Ch1 Infinite Series   (Ch9) 

 

9.1 Sequences 

A sequence of numbers is a function whose domain is the set of integer numbers greater 

than or equal to some integer n0 

 

𝑎𝑛 = 𝑎(𝑛) for 𝑛 ≥ 𝑛0 
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If the sequence approaches a limit L as n   (n approaches infinity), then it is 

convergent, if not it is divergent. 
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Ex: Specify if the sequence is convergent or divergent 
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9.2 Infinite Series 

 

Definition: 

For the sequence {an} 

a1+a2+a3+…..+an+….          is infinite series 

an is the nth term 

S1=a1 

S2= a1 + a2 

S3= a1 + a2 + a3 

⁝ 

Sn= a1+a2+a3+…..+an          Partial Sum 

S1, S2, S3,…….Sn       is a sequence of partial sums 

 

The Series converges if  
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The Geometric Series 

a+ar+ar2+ar3+…….+arn1+……=
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We can write the partial sum 
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9.3 Series without Negative Terms: Comparison and Integration Tests 

 

Theorem 

A nondecreasing sequence converges if and only if its terms are bounded from above. If 

all terms are less than or equal to M then the limit (L) of the sequence is less than or equal 

to M (LM) 

 

Ex: The series  
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Then the upper limit of our series is 3. This does not mean that our series converges to 3. 

Actually it converges to e=2.718281828459045 
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Comparison Test (Term-by-Term Comparison) for series of Nonnegative Terms 

1- If cn is a convergent series and an<cn for some n>n0 then an converges 

2- If dn is a divergent series and an>dn for some n>n0 then an diverges 

 

Our standard series are 

1- Geometric series with |r|<1 convergent 

2- Harmonic series divergent 

3- Any series with 0lim 
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a  divergent 

 

 

The integral Test 

Let an=f(n) where f(x) is a continuous, positive, decreasing function of x for all x≥1 then 

the series ∑an and the integral 
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Since the integral diverges, the series diverges 
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The Limit Comparison Test 

If an0 for n>no and there is a convergent series cn such that cn>0 and 




n
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lim  (finite positive number) 

Then an is convergent 

 

If an0 for n>no and there is a divergent series dn such that dn>0 and 
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Exercises 9.3 Which series converges and which diverges 
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 Converges, geometric series with r=1/10<1 

2- 
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 Diverges by the nth term test for divergence an10 
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Series with Nonnegative terms: Ratio and Root Test 

The Ratio Test 

Let an be a series with positive terms and suppose  
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n

n a

a 1lim  Then 

1- The series converges if <1 

2- The series diverges if >1 

3- The test fails if =1 
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The nth Root Test 

Let an be a series with an0 for nno and suppose that n n . Then 

1- The series converges if <1 

2- The series diverges if >1 

3- The test fails if =1 
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Exercises 9.4 

2- 


1 10
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n
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By ratio test 

 
𝑎𝑛+1

𝑎𝑛
=

(𝑛+1)!

10𝑛+1
∙

10𝑛

𝑛!
=

(𝑛+1)𝑛!

10∙10𝑛
∙

10𝑛

𝑛!
=

𝑛+1

10
 divergent 

lim
𝑛→∞

𝑛+1

10
= ∞ divergent 
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By nth root test  

lim
𝑛→∞

√𝑎𝑛
𝑛 = lim

𝑛→∞
√𝑛2𝑒−𝑛𝑛

= 𝑒−1 lim
𝑛→∞

√𝑛
𝑛

√𝑛
𝑛

= 𝑒−1(1)(1) = 𝑒−1 < 1  convergent 
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𝑛→∞

𝑎𝑛 = lim
𝑛→∞

(1 −
3

𝑛
)

𝑛
= 𝑒−3 ≠ 0  divergent 
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𝑛2)
𝑛

= (1 −
1

𝑛
)

𝑛

(1 +
1

𝑛
)

𝑛
→ 𝑒−1𝑒1 = 1  divergent 
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ln
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ln(𝑛) > 1  
𝑙𝑛𝑛

𝑛
>

1

𝑛
   divergent  
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𝑛

2𝑛
 = 
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2𝑛
<

𝑛2

2𝑛
  

By nth root test of the right-hand-side  

lim
𝑛→∞

√𝑎𝑛
𝑛 = lim

𝑛→∞
√

𝑛2

2𝑛

𝑛

 =1/2<1  convergent 

By the comparison test the series is convergent 
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1

!

n
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 using ratio test 

𝑎𝑛+1

𝑎𝑛
=

(𝑛 + 1)!

(𝑛 + 1)(𝑛+1)
∙

𝑛𝑛

𝑛!
=

(𝑛 + 1)𝑛!

(𝑛 + 1)(𝑛 + 1)𝑛
∙

𝑛𝑛

𝑛!
=

𝑛𝑛

(𝑛 + 1)𝑛
= (

𝑛

𝑛 + 1
)

𝑛

=
1

(1 +
1
𝑛)

𝑛 

→
1

𝑒
= 𝑒−1  convergent 
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(𝑙𝑛𝑛)2
>

1

𝑛𝑙𝑛𝑛
 

Let 𝑓(𝑥) =
1

𝑥𝑙𝑛𝑥
 

∫
𝑑𝑥

𝑥𝑙𝑛𝑥
= ln (𝑙𝑛𝑥)|2

∞
∞

2

= ∞ 

 

Then 
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1

n nn
 diverges 
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Then 


2
2)(ln

1

n n
 divergent by comparison test 

 

 

9.5 Alternating Series 

The alternating series Theorem 

The Series 

∑(−1)𝑛+1𝑎𝑛 = 𝑎1 − 𝑎2+𝑎3 − 𝑎4 + ⋯ … .

∞

𝑛=1

 

 

converges if all three of the following conditions are satisfied 

1- 𝑎𝑛 > 0 for all n. 

2- 𝑎𝑛+1 ≤ 𝑎𝑛 for  n>no. 

3- lim
𝑛→∞

𝑎𝑛 = 0 

 

Ex: The alternating harmonic series 

∑(−1)𝑛+1
1

𝑛

∞

𝑛=1

= 1 −
1

2
+

1

3
−

1

4
+ ⋯ 

1- 𝑎𝑛 =
1

𝑛
> 0 

2- 𝑎𝑛+1 =
1

𝑛+1
<

1

𝑛
= 𝑎𝑛 

3- lim
𝑛→∞

1

𝑛
= 0 

This is a convergent series. 

 

Definition 
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A series an converges absolutely (absolutely convergent) if the corresponding series 

of absolute values |an| is convergent. 

A series that converges but does not converge absolutely converges conditionally. 

 

Absolute Convergence Theorem 

If |an| converges then an converges 

 

Ex:  

∑(−1)𝑛+1
1

𝑛2

∞

𝑛=1

= 1 −
1

4
+

1

9
−

1

16
+ ⋯ 

The corresponding series of absolute values 

∑ |(−1)𝑛+1
1

𝑛2
|

∞

𝑛=1

= ∑
1

𝑛2

∞

𝑛=1

= 1 +
1

4
+

1

9
+

1

16
+ ⋯ 

is a p-series with p=2>1, therefore, it converges absolutely, therefore 







1

2

1
)1(

n

n

n
 is convergent 

 

Alternating p-series 

∑(−1)𝑛+1
1

𝑛𝑝

∞

𝑛=1

= 1 −
1

2𝑝
+

1

3𝑝
−

1

4𝑝
+ ⋯ 

When p is a positive constant then 𝑎𝑛 =
1

𝑛𝑝
 

1- 𝑎𝑛 =
1

𝑛𝑝
> 0 

2- 
1

(𝑛+1)𝑝
<

1

𝑛𝑝
 

3- lim
𝑛→∞

1

𝑛𝑝
= 0 

Therefore 
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1

1
)1(

n
p

n

n
, is a convergent series   p>0 

If p>1 the series converges absolutely 

If p1 the series converges conditionally 

 

Exercises 9.5 

Show if the series is absolutely convergent, conditionally convergent or divergent. 

2- 





2 ln

1
)1(

n

n

n
 

This is an alternating series with 𝑎𝑛 =
1

ln 𝑛
 

0
ln

1


n
an  

nn ln

1

)1ln(

1



 

0
ln

1
lim 

 nn
 

Therefore, it is a convergent harmonic series. But the series  











22 ln

1

ln

1
)1(

nn

n

nn
 is divergent 

Because 
1

ln 𝑛
>

1

𝑛
 

Therefore the series 





2 ln

1
)1(

n

n

n
 is conditionally convergent. 

 

6- 





1

1 ln
)1(

n

n

n

n
 

This is a harmonic series with 𝑎𝑛 =
ln 𝑛

𝑛
 

0
ln


n

n
an  
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n

n

n

n ln

1

)1ln(





 

0
ln

lim 
 n

n

n
 

lim
𝑛→∞

ln 𝑥

𝑥
= lim

𝑛→∞

1/𝑥

1
= 0 

Therefore, it is a convergent harmonic series. But the series  










 
11

1 lnln
)1(

nn

n

n

n

n

n
 is divergent 

Because 
ln 𝑛

𝑛
>

1

𝑛
 

Therefore, the series 





1

1 ln
)1(

n

n

n

n
 is conditionally convergent. 

 

12- 





1

1 1
)1(

n

n

n
 converges conditionally (show the details) 

 

16- 





1

2

sin
)1(

n

n

n

n
 

This is not a harmonic series because the term 
sin 𝑛

𝑛2
 is not always positive. By applying 

the absolute convergence theorem 

2222

1sinsin
)1(

sin
)1(

nn

n

n

n

n

n nn   (p-series with p=2>1) 

Therefore 







1

2

sin
)1(

n n

n
 is convergent therefore 







1

2

sin
)1(

n

n

n

n
 is absolutely convergent 
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33- 


1

)cos(

n nn

n
 













1
2/3

1

)1()cos(

n

n

n nnn

n
 

This is a harmonic series with 𝑎𝑛 =
1

𝑛3/2
 

0
1

2/3


n
an  

2/32/3

1

)1(

1

nn



 

0
1

lim
2/3


 nn
 

The harmonic series is convergent, but the series 













1
2/3

1
2/3

1)1(

nn

n

nn
 is a p-series with 𝑝 =

3

2
> 1 which is a convergent series 

Therefore the series 






1
2/3

)1(

n

n

n
 is absolutely convergent. 
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9.6 Power Series 

A power series is a series of the form 

∑ 𝑐𝑛𝑥𝑛

∞

𝑛=0

= 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 + ⋯ + 𝑐𝑛𝑥𝑛 + ⋯ 

Or 

∑ 𝑐𝑛(𝑥 − 𝑎)𝑛

∞

𝑛=0

= 𝑐0 + 𝑐1(𝑥 − 𝑎) + 𝑐2(𝑥 − 𝑎)2 + 𝑐3(𝑥 − 𝑎)3 + ⋯ + 𝑐𝑛(𝑥 − 𝑎)𝑛 + ⋯ 

Where a is the center of the series and c0, c1, c2,… are the coefficients. 

 

Ex: the geometric series is a special case of the power series with all coefficients equal to 

1. 

∑ 𝑥𝑛

∞

𝑛=0

= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛 + ⋯ 

It converges to 
1

1−𝑥
 for |x|<1 

 

The Radius and interval of convergence 

The series of the form 

∑ 𝑐𝑛(𝑥 − 𝑎)𝑛

∞

𝑛=0

 

Can have either of the following behaviors 

1- The series converges at a and diverges elsewhere. 

2- There is a positive number h such that the series diverges for |xa|>h but converges 

absolutely for |xa|<h. The series may or may not converge at the endpoints x=a+h 

and x=ah. 

3- The series converges for all values of x. 
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In case #2, the set of points at which the series converges is called the Interval of 

Convergence and the value of h is called the radius of convergence. 

 

Ex: 

For what values of x do the following series converge or diverge. (Find the interval of 

convergence of the following series.) 

a) ...
32

)1(
32

1

1 




 xx
x

n

x

n

n
n

 

By applying the absolute convergence theorem, we test the convergence of the 

corresponding series with absolute values |an|.  

|𝑎𝑛| = |(−1)𝑛+1
𝑥𝑛

𝑛
| =

|𝑥|𝑛

𝑛
 

|𝑎𝑛+1| =
|𝑥|𝑛+1

𝑛 + 1
 

lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

|𝑥|𝑛+1/(𝑛 + 1)

|𝑥|𝑛/𝑛
= |𝑥| lim

𝑛→∞

𝑛

𝑛 + 1
= |𝑥| < 1 

The series converges absolutely for |x|<1  1<x<1. 

Now we have to repeat the test at the endpoints of the interval 

At x=1:  







1

1 1
)1(

n

n

n
 

This is a convergent alternating harmonic series. 

a 

h h 

ah a+h 
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At x=1:  

∑(−1)𝑛+1
(−1)𝑛

𝑛

∞

𝑛=1

= ∑
(−1)2𝑛+1

𝑛

∞

𝑛=1

= ∑
(−1)((−1)2)𝑛

𝑛

∞

𝑛=1

= (−1) ∑
1

𝑛

∞

𝑛=1

 

This is a divergent harmonic series. 

Therefore the interval of convergence is 1<x1. 

 

b) 





 




1

5312
1 ...

5312
)1(

n

n
n xx

x
n

x
 

|𝑎𝑛| = |(−1)𝑛+1
𝑥2𝑛−1

2𝑛 − 1
| =

|𝑥|2𝑛−1

2𝑛 − 1
 

|𝑎𝑛+1| =
|𝑥|2(𝑛+1)−1

2(𝑛 + 1) − 1
=

|𝑥|2𝑛+1

2𝑛 + 1
 

lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

|𝑥|2𝑛+1/(2𝑛 + 1)

|𝑥|2𝑛−1/(2𝑛 − 1)
= |𝑥|2 lim

𝑛→∞

2𝑛 − 1

2𝑛 + 1
= |𝑥|2 < 1 

The series converges absolutely for |x|2<1  1<x<1. 

At x=1: 

∑(−1)𝑛+1
1

2𝑛 − 1

∞

𝑛=1

 

This is an alternating series with 

1

2𝑛 − 1
> 0 

1

2(𝑛 + 1) − 1
=

1

2𝑛 + 1
<

1

2𝑛 − 1
 

lim
𝑛→∞

1

2𝑛 − 1
= 0 

Therefore the series is convergent at x=1 

At x=1 
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∑(−1)𝑛+1
(−1)2𝑛−1

2𝑛 − 1

∞

𝑛=1

= ∑(−1)𝑛
(−1)2𝑛

2𝑛 − 1

∞

𝑛=1

= ∑(−1)𝑛
1

2𝑛 − 1

∞

𝑛=1

 

This is also an alternating series that converge as above. 

Therefore the series is convergent for 1x1 

 

c) 





0

32

...
!3!2

1
!n

n xx
x

n

x
 

|𝑎𝑛| = |
𝑥𝑛

𝑛!
| =

|𝑥|𝑛

𝑛!
 

|𝑎𝑛+1| =
|𝑥|𝑛+1

(𝑛 + 1)!
 

lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

|𝑥|𝑛+1/(𝑛 + 1)!

|𝑥|𝑛/𝑛!
= |𝑥| lim

𝑛→∞

1

𝑛 + 1
= 0 < 1 

The series converges for all values of x. 

 

d) 





0

32 ...!3!21!
n

n xxxxn  

|𝑎𝑛| = |𝑛! 𝑥𝑛| = 𝑛! |𝑥|𝑛 

|𝑎𝑛+1| = |(𝑛 + 1)! 𝑥𝑛+1| = (𝑛 + 1)! |𝑥|𝑛+1 

lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

(𝑛 + 1)! |𝑥|𝑛+1

𝑛! |𝑥|𝑛
= |𝑥| lim

𝑛→∞
(𝑛 + 1) = ∞ > 1 

The series diverges for all values of x0. 

 

Exercises 9.6 

3- 





0

)1()1(
n

nn x  

This is a power series and a geometric series rn  
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𝑎𝑛 = (−1)𝑛(𝑥 + 1)𝑛 = (−(𝑥 + 1))𝑛 = 𝑟𝑛 

It converges for |r|<1  

|−(𝑥 + 1)| < 1 ⇒  |𝑥 + 1| ⇒  −1 < 𝑥 + 1 < 1 ⇒  −2 < 𝑥+< 0 

The series is divergent at 2 and 0. 

 

5- 






0 10

)2(

n
n

nx
 

This is a geometric series and it can be written in the form 

∑
(𝑥 − 2)𝑛

10𝑛

∞

𝑛=0

= ∑ (
𝑥 − 2

10
)

𝑛∞

𝑛=0

= ∑ 𝑟𝑛

∞

𝑛=0

 

The series is convergent for |𝑟| = |
𝑥−2

10
| < 1  

−1 <
𝑥 − 2

10
< 1 ⇒  −10 < 𝑥 − 2 < 10 ⇒  −8 < 𝑥 < 12 

 

17- 


1n

n

nn

x
 

|𝑎𝑛| = |
𝑥𝑛

𝑛√𝑛
| =

|𝑥|𝑛

𝑛3/2
 

|𝑎𝑛+1| =
|𝑥|𝑛+1

(𝑛 + 1)3/2
 

lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= lim

𝑛→∞

𝑛3/2|𝑥|𝑛+1

(𝑛 + 1)3/2|𝑥|𝑛
= |𝑥| lim

𝑛→∞
(

𝑛

𝑛 + 1
) = |𝑥| < 1 

The series is convergent for 1<x<1 

At x=1: 

∑
1

𝑛√𝑛

∞

𝑛=1

= ∑
1

𝑛3/2

∞

𝑛=1
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This is a p-series with p=3/2>1  convergent 

At x=1: 

∑
(−1)𝑛

𝑛√𝑛

∞

𝑛=1

= ∑
(−1)𝑛

𝑛3/2

∞

𝑛=1

 

This is an alternating p-series  convergent 

Therefore, the series is convergent for 1x1 

 

Taylor Series and McLaurin Series 

Let f be a function with derivatives of all order throughout some interval containing a as 

interior, then the Taylor Series generated by f at a is 

∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

= 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + ⋯ +

𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 + ⋯ 

And the Mclaurin series generated by f is 

∑
𝑓(𝑛)(0)

𝑛!
𝑥𝑛

∞

𝑛=0

= 𝑓(0) + 𝑓′(0)𝑥 +
𝑓′′(0)

2!
𝑥2 + ⋯ +

𝑓(𝑛)(0)

𝑛!
𝑥𝑛 + ⋯ 

 


