Ch1 Infinite Series (Ch9)

9.1 Sequences
A sequence of numbers is a function whose domain is the set of integer numbers greater
than or equal to some integer ng

a, = a(n) forn > n,

Ex: The sequence defined by a(n) = nT_l

a(1)=0, a(2)=1/2, a(3)=2/3,...... a(n)=(n-1)/n (the n™ term)
a1=0, a,=1/2, az=2/3,...... a,=(n-1)/n

EX:

0,123, , N-1, an=n-1

1, %, 1/3,1/4, ........ 1/n, an=1/n
1,-1/2,1/3, -1/4,......... (—1)“+1%, a - (_1)'“1%
0,-1/2,2/3,-3/4, ....... ( 1)”*1(”n1) an_(-l)“”(”T‘l)
3,3,3,3, i 3 an=3

3,-3,3, 30 (-)™3 a = (-1)™3

If the sequence approaches a limit L as n — oo (n approaches infinity), then it is
convergent, if not it is divergent.

\'\I/‘/ \.\J'//
//l\\ /'/T\'\

If a sequence a, converges to A as n approaches infinity we write
lima, = A

n—oo




Theorems
If lima, =A and limb, =B

n—o0 nN—o0

1- lim[a, +b,]=A+B

2- lim[a, -b,|=A-B
3- lim[a, -b,]= AB

4- lim[kb,]= kB (k is any number)
L ra | _ A
EXx:

o I|m£ ) (-0lim :=(-1)(0)=0

n—oo

) Iim(jj = Iim(l—lj =lim(1) - Iim(l) =1-0=1
n—o0 n n—o0 n n

o lim> =lim® )nm(njnm(j (5)(0)(0) =0

n—oo n

4-7n° . 4/n°-7 0-7
o lim——=Iim == =7
o n® 43 mo=143/n° 140

Theorem:
If lima, =L and f is a function that is continuous at L then

n—oo

lim f(a,) = (L)

Ex: a = n+l
n

n

We know that nT+1 1

Taking f(x):\/_
Therefore . LRSI N
Theorem:

If f(x) is a function defined for all x>ny and {a,} is a sequence such that a,=f(n) when
N=Ng



If lim f(x)=L then lima, =L

X—>00 n—oo

In(n)
n

Ex: Show that

Let f(x)_ln—x a,=f(n)

fim X _ lim /T =0 (by applying L Hopital’s rule)

X—00 X
Therefore lim—2~ In(n)

n—o0 n

=0

Ex: find lim 2

n—wo Gn

Limits Arise Frequently
e lim 1 0

n—oo n

o limx¥"=1

n—oo

n
. X
° I|m(1+—) =e*
n—oo n

e limyYn=1
e [|imx"=0 (]x|<1)
° IimX——O

EXx: Specify if the sequence is convergent or divergent

1- M EDT L EDT 1 convergent
n n
_2n+1 2+1/n 2

—= convergent
1 3n 1/n— 3 3

3- 1+(-1)" divergent
n+1 n

4- 10 ::1010

10" 10"

=10 convergent

EXx: Find the limit of



4. |20
n+1
Let f(x)=/x

2n 2

—= -
n+1 1+1/n

lim f(ﬂ)= f(2)=+2
n+1

5- sin(w/2+1/n)
Let f(x)=sin(x)

(7 1 T
lim =—+=|==
n%w(z nJ 2

lim f(f+1)= f(z/2)=sin(z/2)=1
nse (2N
6- In(n)—In(n +1) = |n(ni+1j
Let f(x)=Inx

/- (1+ ZJ
n

Compare to |im(1+%j ¢

n—oo

(1 + Zj —e’
n

g- (n+1)! _ (n+D)n!
n! n!

—n+loo (61=6-5-4-3-2-1=6-5!)

9- U/n? =¥n-n =¥n¥n - 1)1) =1






9.2 Infinite Series

Definition:

For the sequence {a.}

ataptast.....+ant. ... 1s infinite series
an is the n term

Si=a;

S,=a; +a,

S;=a;+a+a;3

Sp= aptaztast.....fay Partial Sum
S1, Sz, Sa,enn Sn isasequence of partial sums

The Series converges if

da,=L or lims =L
=1

n—oo

The Geometric Series

atartar’+ar®+..... far" .. =Y art
n=1
or
atart+ar’+ar’+....... tarm = ar
n=0
Sn=a+ar+ar’>+ar3+....... +ar™?! (1)
rSy= ar+ar?+ar3+ar‘+.... ... +ar” (2)
Subtract (2) from (1)
Sp—rSp=a—ar"
a _ n
S, = ald-r’) r£1
1-r

If |r|<1 then r"—0, then the geometric series converges to

iar”‘l =2
n=1 1-r

converges, if so, find the sum.

Ex: Determine whether i L
= n(n+1)
From partial fractions, we know
1 1 1

n(n+1) “h on+l




We can write the partial sum

k
Z 1 1 1 1 N 1

— =t +....
“~nin+l) 1.2 2.3 3.4 k-(k+1)

11 1 1 1 1 1 1
Sc=|lz—Z |+ z—Z|+H| ==+t o——
I G e )
S, =1-—— (Telescopic Sum)
limS, =Ilim 1—i =1
k—o k—>c0 1+k

Then the series i L
~n(n+1

K=

=1 (convergent)

Divergent Series

n+t 2,34, 0+t Divergent (lim a,, = 1)
= n 1 2 3 n n—oo

The n™ Term Test for Divergence
If lima, =0 or lima, fails to exist, then

n—oo n—oo

> a, diverges
n=1

Necessary Condition for Convergence
-
If > a, converges =, a,—0

n=1

Theorems

If >a,=Aand > b =B, then

>(a,+b,)=A+B (Sum Rule)
>(a,-b,)=A-B (Difference Rule)

> (ka,)=kA (Constant Multiple Rule)
EXx:



1-1/2 1-1/6

1
1

6n—l

3n—1
1 ( 6n—l
1Jn—l

6

[

n
1

o0

2,

n

6nfl

0 3n—1 _1
1

n=

=k+2

n-2—=n

,let k=

1
4n

n=2

1
4

—1-

1
4 1-1/4

+

1
1-1/2 1-1/3

y-

)
n=0

2

2)
n=0

5 1
4+ — | =
7%)
10,22
2

2D)
n=0

2

1

+

1
1-1/2 1+1/5

)”:




S, 1 1
YIn=, a =In==—Inn
n=1 n n

lima, — —o Divergent

n—o

> cosnz =1-1+1-1+... Divergent

n=0




9.3 Series without Negative Terms: Comparison and Integration Tests

Theorem

A nondecreasing sequence converges if and only if its terms are bounded from above. If
all terms are less than or equal to M then the limit (L) of the sequence is less than or equal
to M (L<M)

Ex: The series

T (01=1)
—=n 20 3

Converges because all of its terms are positive and less than or equal to the corresponding
term of

Then the upper limit of our series is 3. This does not mean that our series converges to 3.
Actually it converges to e=2.718281828459045

Ex: The Harmonic Series

Can be written as

1 (1 1 1 1 1 1 1 1 1
Sl o4 || oo || o — e — |+
( ] (5 6 7 8) [9 10 16}

1 1 1 1 1 1 1
>1+ + +—F .t — | +....
( j (8 8 8 8) (16 16 16)
2

1 8
J— >_
16

- _ 4.1 _1
"8 2 2

In other words

10



Comparison Test (Term-by-Term Comparison) for series of Nonnegative Terms
1- If Xcn is a convergent series and an<c, for some n>n, then > a, converges
2- If Xd, is a divergent series and a,>d, for some n>n, then > a, diverges

Our standard series are
1- Geometric series with |r|[<1 convergent
2- Harmonic series divergent
3- Any series with lima, =0 divergent

The integral Test
Let a,=f(n) where f(x) is a continuous, positive, decreasing function of x for all x>1 then

the series Y a, and the integral j f (x)dx both converge or diverge both
1

Ex: The p-Series (p is a real constant)
51 101 1 1
lF—l—p F+§+l-..+ﬁ+““

Let f(x)= ,p>1 =>p—1>0 =>1-—p<0

—p+1 b
[ x*dx=lim o e o)- inm( L -t
beoo_p+| 1— p b —pbo bP p__‘]_
Which is finite, hence the p-series converges for p>1
If p=1 we have
| 1 1 1 1
D o=l S+
N 2 3 4 n

The harmonic series which we know it diverges or we can use the integral test

j —dx_llmlnx| =
1 X b—ow

Since the integral diverges, the series diverges

If p<1, by comparison test we find that each term is greater that the harmonic series terms
which is divergent

1111 11 1 1

=, =>=, =>=....
27723 73 % 47w
Z— diverges for p<1

=l

11



The Limit Comparison Test
If an>0 for n>n, and there is a convergent series Xc, such that ¢,>0 and

lim & < oo (finite positive number)

n—oo C

Then Xa, is convergent

If a,>0 for n>n, and there is a divergent series Zd, such that d,>0 and
lim :—” <o (finite positive number)

Then Xa, is divergent

&2 =, 2n® +100n% +1000
Ex: a- b-
nznz—n+1 HZ:; @/8)n° —n+2

. . 2n 2
a- For large values of n the series behaves like Z? = Zﬁ’ then we can compare our

series with the divergent harmonic series
Iim( 2n j (2/n))=1im LU

e\ N7 —n+1 e n® —n+1

The series is divergent

b- For large values of n the series behaves like »° —162%, then we can compare
n

@ 8)n
is with the series 1/n® which we know it is convergent.

3 2 6 5 3
|im(2” +100n +1oooj/(ij:“m(2n +100n® +1000n J:2/(1/8):16

= (1/8)n® —n+2 n’ 1/8)n° —n+2

The series is convergent because Z% s a p-series with p=3>1

Exercises 9.3 Which series converges and which diverges
1- o0

n=1
2- i— Diverges by the n™ term test for divergence a,—1+0

n

sin’n

3-3 % Sin“N- - onverges because <X (term-by-term comparison)

—l
n=1

12



10—2 ~2 By limit comparison test with 1/n

~n+1
!m(ni ) <1’“)—,!'le-1 diverges
15- Zj:\/_ <Z convergent
16- z%
XX 1x) X VX

f(x , lim = lim = lim
( ) In X x—o QX xow (]_/ X) X—>0 2\/; x—0 D
lima, = =0 (N term test) divergent

18- 3
n=1 n%
Use limit comparison test with the divergent series ZH

1
| = =1
nm(n\/_j( j !ﬂl\/" divergent series

13



Series with Nonnegative terms: Ratio and Root Test
The Ratio Test
Let Xa, be a series with positive terms and suppose
lim 211 = 5 Then
n—o an
1- The series converges if p<1
2- The series diverges if p>1
3- The test fails if p=1

EX:
z (n) & ninl
Z(Zn)!_z(Zn)!’

n=1 n=1

_ (n+)Y(n+1)!

" (2n+2)!

a,,, M+D(n+D!2n)!  (n+Dni(n+Dnl(2n)!  (n+1)
a,  nnl(2n+2)!  nl2n+2)2n+1)(2n)!  2(2n+1)
fim 2r:2 _ fjm (MY =1/4 the series is convergent

e @ 1w 2(20+1)

The n'" Root Test

Let Za, be a series with an>0 for n>no and suppose that ¥n — p. Then
1- The series converges if p<1
2- The series diverges if p>1
3- The test fails if p=1

n2

Ex: a,=—
2
2 n/fAn
Yfa, =1 2— - ‘/ﬁz‘/ﬁ —1/2 the series is convergent
: e"
EX. an :F
o, =1~ £0 =—°__e>1 the series is divergent
nto (%)1 (1)10

14



Exercises 9.4

=, nl
2 Z10n

n=1

By ratio test

a (n+1)! 10™ (n+1)n! 10" n+1 .
ot = — = = — dlvergent
an 10m+1  nl 10-10"  n! 10

. +1 .
lim n—o = oo divergent

n—oo

By n" root test

lim %/a, = lim Yn2e " = e~ 'lim YnVn = e~ 1(1)(1) = e~! < 1 = convergent
n—oo

n—-oo n—-oo
0 3 n
> 3[-7)

. : 3\" _3 .
lim a, = lim (1 — ;) = e~° # 0 = divergent

n—-oo n—-oo
10- z[l-ij
n=1 n

a, = (1 — E)n = (1 — %)n (1 + %)n - e lel = 1 = divergent

In(n) >1=>22> % — divergent

n

15



12-S (l_izj = il_i% = divergent
m\N N na N

. ninn
14-
27
n _nln _ n?
(lnn<n) xz_n_z_n<2_n

By n'" root test of the right-hand-side
n 2
lim V/a, = lim ~ =1/2<1 = convergent

By the comparison test the series is convergent

20 inln' using ratio test
=1

Apyr  (n+ 1P " (n+ 1)n! n"

a2, +DED 7l m+Dm+D" 0l (n+ D"

1 -1
- > =e convergent

© 1
22 Z(In n)2

n=2

1 1
(Inn)? > ninn

Let f(x) = —

1
xlnx

f"o dx In(ln)|2
—_— = OO
, xlnx n(in)lz

0 1 .
Then ;m diverges

16

n

n

~(

n+1



Then Z::(Inln)z divergent by comparison test

9.5 Alternating Series
The alternating series Theorem
The Series

Z(—l)n“an =a; —az+as —a, + - ...
n=1

converges if all three of the following conditions are satisfied
1- a, > 0 forall n.
2- an4q < a, for n>n,.
3- lima, =0

n—->oo

Ex: The alternating harmonic series

3- liml=0

n-oon

This is a convergent series.

Definition

17



A series Xa, converges absolutely (absolutely convergent) if the corresponding series

of absolute values X|a,| is convergent.

A series that converges but does not converge absolutely converges conditionally.

Absolute Convergence Theorem

If X|a,| converges then Za, converges

Ex:

- 1 1 1
_1n+1 =1—-- -

n=

The corresponding series of absolute values

§:|(—1)"+1l _2l_1+l+l+l+
. nzl  Lin? " 4 9 16
n=

n=1
Is a p-series with p=2>1, therefore, it converges absolutely, therefore

Z(—l)”n—l2 is convergent

n=1

Alternating p-series

When p is a positive constant then a,, = nip

1 1

T (m+DP P

3- lim = =0

n—-oo nP

Therefore

18



PG ip IS a convergent series p>0
n

n=1

If p>1 the series converges absolutely

If p<1 the series converges conditionally

Exercises 9.5

Show if the series is absolutely convergent, conditionally convergent or divergent.

< 1
2- Y (-)"—

HZ:;‘( ) Inn
This is an alternating series with a,, = li

nn

an:i>0
Inn

1 1
—<_
In(n+1) Inn

.1
lim—=0
n—» nn

Therefore, it is a convergent harmonic series. But the series

1 1
Because — > -
Inn n

S

= Zi is divergent
Inn Inn

n=2

Therefore the series i(—l)“ %

n=2

6_ i (_1)n+1 In_n
n=1 n

Inn

This is a harmonic series with a,, = —

is conditionally convergent.
n

19
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In(n+1)

n+1 n

. _Inn
lim—=0
n—oo n

~ Inx 1/x
lim—=1lim—=0
n—-oco X n—-oo

Therefore, it is a convergent harmonic series. But the series

>

n=1

= ZlnTn is divergent

n=1

(_1)n+1 In_n

1
Because n—" > -

Therefore, the series Z( 1)”+l - Is conditionally convergent.

n=1

12- i(—l)”“% converges conditionally (show the details)
n n

sm n

This is not a harmonic series because the ter

the absolute convergence theorem

aSinn| o asinn |sm n|

‘ ‘ 7 <7 (p series with p=2>1)

Therefore
2
n=1

i(‘l N sinzn .
n=1

n

(-1 S'ﬂ@‘ Is convergent therefore

20




33- Z“’: cos(mr)

n=1

i cos(mz) Z (-1

=1 = N

This is a harmonic series with a,, = =75

1 1
(n+1)3/2 < n3/2

lim— 1 =0

n—o n3/2

The harmonic series is convergent, but the series

0 ( 0 1 . . . _ 3 . . .
Z;' = I Z; 57 1S @ p-series with p = ~ > 1 which is a convergent series

8

21



9.6 Power Series

A power series is a series of the form

(e 0]
Z CpX™ = Co + 1 x + Cux% + c3x3 + -+ cpx™ + -
n=0

Or

(0]

z coix—a)"=cot+(x—a)+ce(x—a)’+o(x—a)d +-+c,(x—a)t + -
n=0

Where a is the center of the series and co, €1, Co,... are the coefficients.

Ex: the geometric series is a special case of the power series with all coefficients equal to

1
Zx”=1+x+x2+x3+---+x"+---

n=0

1
It converges to — for |x|<1

The Radius and interval of convergence

The series of the form

(0]

> el -y

n=0
Can have either of the following behaviors
1- The series converges at a and diverges elsewhere.
2- There is a positive number h such that the series diverges for |x—a|>h but converges
absolutely for |[x—a|<h. The series may or may not converge at the endpoints x=a+h
and x=a-h.

3- The series converges for all values of x.

22



A
\ 4

C
g_,‘v
C

In case #2, the set of points at which the series converges is called the Interval of

Convergence and the value of h is called the radius of convergence.

EXx:
For what values of x do the following series converge or diverge. (Find the interval of

convergence of the following series.)

o0 Xn X2 X3
) AR G HLA
a) nZ;,( ) - >3

By applying the absolute convergence theorem, we test the convergence of the

corresponding series with absolute values X|ay|.

xn |x|n

a — —1 n+1__ | —
janl = [=1m ] = 2

|x|7’l+1
a =
@] = o

a x|t/ (n+1 n

limI n+1|= limI I/ )=|x| lim——=|x| <1
n—oo Ianl n-oo |x|"/n n-oon + 1

The series converges absolutely for |[x|<1 = —1<x<1.

Now we have to repeat the test at the endpoints of the interval

At x=1:
Z (_1)n+1 E
n=1 n

This is a convergent alternating harmonic series.

23



At x=-1:

O (CDT O DT O (DD
;(—1) o —;—n —Z = (-1)

This is a divergent harmonic series.

[
SIr

S
Il
Juy

Therefore the interval of convergence is —1<x<1.

X2n—1 X3 X5

3 —nm =X——+——...
b) Z( ) 2n-1 3+5

n=1

xZn—l X 2n—1
la,| = |(=1)™** =| |

2n—1 2n—1

|x|2(n+1)—1 |x|2n+1
lanl = 20 T =1 2n g1
|41l |x|>"*1/(2n + 1) 2n—1

l = i = |x/2 li = |x2 <1
e A T an = - M g T

The series converges absolutely for |x[?<1 = —1<x<1.
At x=1:

- 1
-1 n+1

Z( ) 2n—1

n=

This is an alternating series with
1
2n—1
1 1 1
2+ D1 2n+1 2n-1
_ 1
rll—rélo n—1_

Therefore the series is convergent at x=1
At x=-1

>0

0

24



)Zn 1

This is also an alternatlng series that converge as above.

Therefore the series is convergent for —1<x<1

0 Xn X2 3
— =1+ X+—+—
) nZ:(; n! !
le |x|7’l
|x|7’l+1
a x|™1/(n+ 1! 1
limM=lim|| /( )=|x|lim—=0<1
n—co Ianl n-oo |x|"/n! n-on + 1

The series converges for all values of x.

d) D NIX" =14 X420+ 3+,
n=0

lay| = [n!x™| =nl|x|"
la, 1] = [(n+ DIx™| = (n+ D! x|
a n+ 1! |x|?+?
1im|n+1|— im ! Ix] =|x|limn+1)=0 >1
n—oo |an| n—oo nl |x|n n—oo

The series diverges for all values of x+0.

Exercises 9.6
3 (D" (x+D)"
n=0

This is a power series and a geometric series Zr"

25



ap = (D"x+ D" = (= +1))"=1r"
It converges for |r|<1 =
l—-(x+1D|<1=|x+1]=> -1<x+1<1 = -2<x+<0

The series is divergent at —2 and 0.

£ 5 (x=2)"
Zo 10"

This is a geometric series and it can be written in the form

> =2 () =

n=0 n=0

. . -2
The series is convergent for |r| = |x1_0| <l=

XxX—2
—1<—<1 = -10<x-2<10 =2 -8<x<12

10
oy
17- Z; "
xn |x|n
|an|=:‘ =
nn n3/2
|x|TL+1

li |an+1| n3/2|x|n+1 x| 1i (
im = lim = |x| lim
n-ow |a,|  noowo(n+4 1)3/2|x|? n—ow \n + 1

)=|x|<1

The series is convergent for —1<x<1

At x=1

C 1 e L
nn_z:n?’/2

n=1 n=1

26



This is a p-series with p=3/2>1 = convergent

At x=-1:

o (D" O (D"
n\/ﬁ - n3/2

n=1 n=1

This is an alternating p-series = convergent

Therefore, the series is convergent for —1<x<1

Taylor Series and McLaurin Series
Let f be a function with derivatives of all order throughout some interval containing a as

interior, then the Taylor Series generated by f at a is

I Z (n)
STD 6oy =@+ @ -0+ 52wy + ot Py
n=0
And the Mclaurin series generated by f is
(n) " (n)
Zf _(O) " =f(0)+f'(0)x +f ( Dz gyt n!(O)x”
n=0
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