وزارة التعليم العالي والبحث العلمي وحدة الإشراف والتقويم العلمي

شعبة ضمان الجودة والاعتماد الأكاديمي

استمارة وصف البرنامج الأكاديمي للكليات والمعاهد للعام الدراسي ٢٠٢٣-٢٠٢

الجامعة: جامعة بغداد

الكلية /المعهد: كلية الهندسة

القسم العلمي: هندسة الحاسبات

تاريخ ملء الملف: ٢٠٢/١٠/١٣

التوقيع: التوقيع: الم د. مصطفى اسماعيل سلمان التاريخ: ٢٠ / ٢٠ / ٢٠

	De	
	P	التوقيع:
el star	ي: ۲۰ د. م	اسم المعاون العلم
۲. ۵	x-9-	التاريخ: ->

دقق الملف من قبل :

شعبة ضمان الجودة والأداء الجامعي - - - الطاك اسم مدير شعبة ضمان الجودة والأداء الجامعي ال^م. درم مس

التاريخ: ٢٠٩٠ كم كم التوقيع:

مصادقة السيد العميد

c. ct/4/c.

وصف البرنامج الأكاديمي

وصف البرنامج الأكاديمي هذا إنجاز مقتضيا لاهم خصائص البرنامج ومخرجات التعلم المتوقعة من الطالب تحقيقها مبرهنا عما إذا كان قد حقق الاستفادة القصوى من الفرص المتاحة ويصاحبه وصف لكل مقرر ضمن البرنامج.

	· · ·
جامعة بغداد كلية الهندسة	1-المؤسسية التعليمية
قسم هندسة الحاسبات	2- القسم العلمي /المركز
برنامج هندسة الحاسبات	3-اسم البرنامج الاكاديمي أو المهني
بكالوريوس في هندسة الحاسبات	4-اسم الشهادة النهائية
النظام السنويّ وبتواجد الطلاب في داخل الحرم	5-النظام الدراسى:
الجامعي وبدوام كامل ضمن طريقة (برنامج اليوم)	سنوي /مُقررات/أُخرى
وجها لوجه او التعليم الالكتروني.	-
العام الأكاديمي يتألف من 30 أسبوع كل طالب يتوجب	
عليه إتمام 159 ساعة معتمدة للنجاح كل المقررات	
تخضع (150-100) دقيقة محاضرات أسبوعيا و	
(120) دقيقة .	
IAC-Iraqi Accreditation Council	6-برنامج الاعتماد المعتمد
N/A	7-المؤثرات الخارجية الأخرى
2022/10/13	8-تاريخ إعداد الوصف
	 9- أهداف البرنامج الأكاديمي:
ماط الأكاديمية والقطاعات الأخرى من تطبيقات هندسة	
	حاسبات.
ل خلال التعليم مدى الحياة.	2- منح الخريجين امكانية التطوير المهنى المستمر من
	3- تخريج مهندسين قياديين في المهنة وفي الابتكار.
تمع واهمية الاخلاق في المهنة.	 4- تخريج مهندسين ذوي معرفة بتأثير مهنتهم في المجن

10-مخرجات البرنامج المطلوبة وطرائق التعليم والتعلم والتقييم

بعد استعراض معايير ABET وأهداف البرنامج، فقد تقرر من قبل وزارة التعليم العالي والبحث العلمي أن معايير ABET (أ - ك) تشمل روح الرؤية التربوية لدينا. ولذلك، تم اعتمادها.

أ- الأهداف المعرفية

11- القدرة على تطبيق المعرفة في الرياضيات والعلوم والهندسة لوصف وحل المشاكل. 21- القدرة على تصميم وإجراء التجارب، وكذلك لتحليل و تفسير البيانات. 31- القدرة على تصميم نظام أو مكون أو عملية لتلبية الاحتياجات المطلوبة.

ب- الأهداف المهاراتية القدرة على استخدام التقنيات والمهارات والأدوات الهندسية الحديثة اللازمة لممارسة مهنة الهندسة وتطور برنامج هندسة الحاسبات المعارف والمهارات التي من شأنها تمكين الطلاب من:

ب 1- تطوير الكفاءة الأولية في تخصصات هندسة الحاسوب. ب 2- تحديد وصياغة وحل المشاكل الهندسية للحاسوب باستخدام الأدوات الهندسية الحديثة والتقنيات، والمهارات. ب 3- أداء تصميم المتكامل لأنظمة الحاسوب والمكونات أو العمليات عن طريق الخبرات العملية .

طرائق التعليم والتعلم: 1- المحاضرات. 2- البرامج التعليمية. 4- مختبر. التجارب 5- الاختبارات والامتحانات. 6- الأسئلة والمناقشات. 7- اتصال بين النظرية والتطبيق. 8- الرحلات الميدانية. 9- الأنشطة اللامنهجية. 10- الندوات. 11- الحلقات النقاشية والمحادثات الشفوية.

طرائق التقييم

1- دراسة أحوال الخريجين السابقين. 2- لجان ذات الصلة في الإدارة مثل QA،scientific . 4- سيتم تعقب اتجاهات الموظفين من خريجي كليتنا على سبيل المثال مكان العمل والمسمى الوظيفي كل عام. 4- ستعطى دراسة من أرباب العمل على الخريجين كل سنه على الأقل لتحديد ما إذا كانت اتجاهات عملهم ذات صله باختصاصهم. 5- سيتم إعادة تقييم في كل مرة لعدة سنوات من قبل أعضاء هيئة التدريس ومن ثم الوزارة وستعرض المحادثات مع الخريجين.

ج-الأهداف الوجدانية والقيمية

ج1- الحصول على تقدير لبعض المشاكل الأخلاقية التي تنشأ في ممارسة المهنة. ج2- الحصول على فهم تأثير مهنة الخريج في المجتمع.

طرائق التعليم والتعلم

الاختبارات، ومسابقات. الأنشطة. المشاركة أثناء المحاضرات

طرائق التقييم

1- دراسة أحوال الخريجين السابقين. 2- لجان ذات الصلة في الإدارة مثل QA،scientific . 3- سيتم تعقب اتجاهات الموظفين من خريجي كليتنا على سبيل المثال مكان العمل والمسمى الوظيفي كل عام. 4- ستعطى دراسة من أرباب العمل على الخريجين كل سنه على الأقل لتحديد ما إذا كانت اتجاهات عملهم ذات صله باختصاصهم 5- سيتم إعادة تقييم في كل مرة لعدة سنوات من قبل أعضاء هيئة التدريس ومن ثم الوزارة وستعرض المحادثات مع الخريجين.

د-المهارات العامة والتأهيلية المنقولة (المهارات الأخرى المتعلقة بقابلية التوظيف والتطور الشخصي) د1- تطوير مهارات الاتصال الكتابية والشفوية د2- القدرة على العمل في مجاميع متعددة التخصصات.

طرائق التعليم والتعلم

الاختبارات، ومسابقات. الأنشطة. المشاركة أثناء المحاضرات

طرائق التقييم

1- دراسة أحوال الخريجين السابقين. 2- لجان ذات الصلة في الإدارة مثل QA،scientific . 4- سيتم تعقب اتجاهات الموظفين من خريجي كليتنا على سبيل المثال مكان العمل والمسمى الوظيفي كل عام. 4- ستعطى دراسة من أرباب العمل على الخريجين كل سنه على الأقل لتحديد ما إذا كانت اتجاهات عملهم ذات صله باختصاصهم 5- سيتم إعادة تقييم في كل مرة لعدة سنوات من قبل أعضاء هيئة التدريس ومن ثم الوزارة وستعرض المحادثات مع

11- **بنية البرنامج** ويقدم القسم بر امج الهندسة للحصول على درجة البكالوريوس في العلوم (بكالوريوس) في هندسة الحاسبات، اما بر امج القسم الهندسية للحصول على .M.Sc الماجستير تتم بالتعاون مع قسم هندسة الإلكترونية والاتصالات.

معتمدة	الساعات اله	اسم المقرر او المساق	رمز المقرر او المساق	المرحلة الدراسية
العملي	النظري			
-	2	حقوق الانسان	GS 101	الاولى
-	4	رياضيات	GE 102	الاولى
2	3	الكترونيك 1	COE 103	الاولى
2	3	دوائر كهربائية	COE 104	الاولى
2	3	اساسيات النظم الرقمية	COE 105	الاولى
2	3	منهجية برمجة الحاسوب	COE 106	الاولى
2	3	اساسيات نظام الحاسوب	COE107	الاولى
-	2	اللغة الإنكليزية	GS 108	الاولى
-	2	اللغة العربية	GS 201	الثانية
-	4	الرياضيات الهندسية	COE 202	الثانية
2	3	الكترونيك 2	COE 203	الثانية
2	3	المعالج الدقيق والحاسوب الدقيق 1	COE 204	الثانية

جدول رقم (1): بكالوريوس درجة المناهج الهندسة / الحاسوب

2	3	تصميم النظم الرقمية	COE 205	الثانية
2	2	هياكل البيانات والخوارزميات	COE 206	الثانية
2	3	اتصالات	COE 207	الثانية
-	2	اللغة الإنكليزية	GS 208	الثانية
				·
-	3	معمارية الحاسوب 1	COE 301	الثالثة
2	3	انظمة السيطرة الرقمية	COE 302	الثالثة
2	3	المعالج الدقيق والحاسوب الدقيق 2	COE 303	الثالثة
-	3	نظم التشغيل	COE 304	الثالثة
2	3	شبكات الحاسوب	COE 305	الثالثة
-	2	معالجة الاشارة الرقمية	COE 306	الثالثة
2	2	أنظمة قواعد البيانات	COE 307	الثالثة
-	2	اللغة الإنكليزية	GS 308	الثالثة
2	3	تكنلوجيا الانترنت	COE 401	الرابعة
-	3	معمارية الحاسوب 2	COE 402	الرابعة
2	3	الأنظمة المضمنة	COE 403	الرابعة
-	3	امن الحاسوب	COE 404	الرابعة
-	3	الروبوتات والذكاء الصناعي	COE 405	الرابعة
-	3	الرؤية الحاسوبية وتميز الانماط	COE 406	الرابعة
2	2	المشروع الهندسي	COE 407	الرابعة
-	2	اللغة الإنكليزية	GS 408	الرابعة

12-التخطيط للتطور الشخصى

التحسين المستمر هو التركيز على الطلبة ويتم كل يوم كجزء طبيعي من مهنتنا. نحن نسعى دائما لتحسين العمليات التي تزيد من رفع درجة تحصيل أهداف القسم والكلية ويتم إجراء در اسة دورية لدر اسة مواقع الضعف أو العجز من اجل تجاوزها أو التغلب عليها. ونطلب من كل مدرس العمل على تحسين مستمر لأداء الطلبة وكتابة المشاكل والعقبات التي تواجه الطلبة أو العملية التعليمية ضمن اختصاصه في موقع عمله في محاولة لضمان الجودة ونمارس التحسين المستمر لتقديم برنامجنا الأمثل وقد نفذت الإجراءات المحددة التالية بنجاح:

1- تغييرات شاملة في المناهج الدراسية في العام الدراسي 2019-2020
 2- التحسين المستمر لأعضاء هيئة التدريس من خلال برامج التدريب.
 3- تعزيز عدد من أعضاء هيئة التدريس للصفوف العلمية العليا.
 4- شراء عدد من المعدات المختبرية وأدوات القياس.
 5- شراء عدد من المعدات المختبرية وأدوات القياس.
 6- شراء عدد من الكتب لمكتبة القسم.
 6- شراء عدد من المعدات المختبرية وأدوات القياس.
 6- شراء عدد من الكتب لمكتبة القسم.
 7- إنشاء شبكة مرافق الوصول المقدمة من قبل شبكة كلية الهندسة اللاسلكية LAN مع المحطات متوفرة الآن في القسم.
 7- إنشاء شبكة مرافق الوصول المقدمة من قبل شبكة كلية الهندسة اللاسلكية LAN مع المحطات متوفرة الآن في القسم.
 8- توظيف عدد من أعضاء هيئة التدريس والملاكات الهندسية.
 9- زيادة في الأنشطة اللاصفية العليات.

13- معيار القبول (وضع الأنظمة المتعلقة بالالتحاق بالكلية أو المعهد)

القبول في برنامج البكالوريوس لقسم هندسة الحاسبات قبول مركزي وزاري ويجب تلبية المتطلبات الدنيا التالية:

- المتقدم أو المتقدمة ينبغي أن يكون له شهادة الدراسة الثانوية العراقية، أو ما يعادلها. يجب على الطلاب الحصول على معدل عال يؤهل للقبول في كليات الهندسة.
 - يتم التحكم بالقبول مركزيا من قبل وزارة التعليم العالي والبحث العلمي.
- 3- توزيع الطلاب على الأقسام الهندسية 13 من كلية الهندسة في جامعة بغداد، بما في ذلك قسم هندسة الحاسبات، وفقا لخطة قدرة الإدارات ومتوسط تقييم المتقدمين وتطلعهم أو الاختيار. وكانت خطة قدرة قسم هندسة الحاسبات في السنوات الثلاث الأخيرة 40 50 طالب.
- 4- عدد الطلبة المقبولين يقتصر على عدد من المقاعد متاح وفق ما يقرره مجلس الكلية بناء على قدرة الموارد في الكلية كما شملت خطة لقبول الطلاب المتفوقين من مؤسسة المعاهد الفنية والاوائل على قسمي علوم الحاسبات و علوم الرياضيات، والموظفين المتميزين من مؤسسات الدولة والوزارات.
 - 5- يجب على مقدم الطلب تقديم الوثائق المطلوبة خلال فترة زمنية محددة.
- 6- مقدم الطلب الذي تخرج من نظام المدارس الثانوية خارج العراق أن يكون قد أتم الثانية عشرة من المدارس الابتدائية والثانوية المشتركة ودراسات من مدرسة معترف بها. ومطلوب أيضا تقديم شهادة معادلة من وزارة التربية العراقية.

القبول لقسم هندسة الحاسبات هو قدرة تنافسية عالية. كما هو موضح أعلاه، يتم منح المتقدمين القبول وفقا لإجراء تقييم شامل على أساس سجل تقييم، ولكن فقط إلى الحد الذي يسمح به أكبر عدد ممكن من القبو لات الجديدة التي تخصص لكل عام در اسي.

14- اهم مصادر المعلومات عن البرنامج

أ- صفحة القسم على الموقع الإلكتروني للكلية. ب- دليل قسم هندسة الحاسبات. ج- دليل كلية الهندسة. د- بعض اجتماعات لجان من الوزارة لقسم هندسة الحاسبات.

							لمنهج	هار ات اا	خطط م	A									
			ضعة للتقييم	ج الخاه	، البرنام	فردية من	لتعلم الأ	رجات اا	بلة لمذ	بعات المقا	في المر	م اشارة	رجي وضي	÷					
										نامج	من البرن	مطلوبة	ت التعلم ال	مخرجا					
Year / Level	رمز المقرر	اسم المقرر	أساسي أم اختياري		بة الاهداف المعرفية				الاهداف المهاراتية الخاصة بالبرنامج		الاهداف الوجدانية والقيمية			المهارات العامة والتاهيلية المنقولة المهارات الأخرى المتعلقة) بقابلية التوظيف والتطور					
				A1	A2	A3		B1	B2	B3		C1	C2	C3	C4	D1	D2		
	GS 101	Human rights	С									\checkmark				\checkmark			
	GE 102	Mathematics	С	\checkmark	\checkmark														
	COE 103	Electronic I	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark							\checkmark		
First	COE 104	Electrical circuits	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark							\checkmark		
FIISt	COE 105	Fundamentals of	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark							\checkmark		
	COE 106	Computer programing	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark					\checkmark		
	COE107	Fundamentals of	С	\checkmark		\checkmark		\checkmark									\checkmark		
	GS 108	English	С													\checkmark	\checkmark		
	GS 201	Arabic	С													\checkmark	\checkmark		
	COE 202	Engineering Mathematics	С	\checkmark	\checkmark														
	COE 203	Electronic II	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark					\checkmark		
Second	COE 204	Microprocessor and	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				\checkmark		
Second	COE 205	Digital System Design	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				\checkmark		
	COE 206	Data Structure and	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark							
	COE 207	Communications	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark						
	GS 208	English	С													\checkmark			
	COE 301	Computer Architecture	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark						
	COE 302	Digital Control	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark						
Thind	COE 303	Microprocessor and	С		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark							
Third	COE 304	Operating Systems	С	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark									
	COE 305	Computer Network	С	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark										
	COE 306	Digital Signal	0			\checkmark		\checkmark	\checkmark										

	COE 307	Data Base Systems	0	\checkmark	\checkmark		-	\checkmark	\checkmark	\checkmark					\checkmark	
	GS 308	English	С											\checkmark	\checkmark	
	COE 401	Internet Technology	С	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
	COE 402	Computer Architecture	С	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	COE 403	Embedded System	С	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
Esseth	COE 404	Computer Security	С	\checkmark	\checkmark		-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Fourth	COE 405	Robotics and Artificial	0	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	COE 406		0	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	COE 407	Engineering Project	С				-									
	GS 408	English	С													

First Stage

TEMPLATE FOR COURSE SPECIFICATION نموذج وصف المقرر

MATHEMATICS I

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Mathematics I / GE102
4. Modes of Attendance offered	Semester System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The Semester year is composed of 15-week regular subjects.
5. Semester/Year	1st and 2nd Academic Semesters 2023 – 2022

6. Number of hours tuition (total)	120 hrs. / 3 theory + 1 discussion hrs/week
7. Date of production/revision of this	October / 2022
specification	October 7 2022

8. Aims of the Course

A1. The general goal of education as a whole is to prepare the student for public and private life to benefit his community and himself. Upgrading the student's level in mathematics in particular and in the educational process in general.

A2. Developing the student's ability to conclude, generalize, and use their own logic.

- A3. Student understands of some mathematical concepts, such as: relationship function trigonometric functions differentiation integration prob.
- A4. Understanding mathematical proof and its rationale. Understanding some mathematical systems such as: clique-matrices. Recognize mathematics and learn about its most important applications in life.

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A. Cognitive goals.

- A1. Solution of linear algebraic equations
- A2. Matrix operations and inverse of a matrix
- A3. Complex variables
- A4. Differential calculus
- A5. Integral calculus

B. The skills goals special to the course

- A student who successfully fulfills the course requirements will have demonstrated:
- B1. Learn to use concepts of engineering mathematics.
- B2. Apply these concepts in their studies to solve the engineering problems related to the main topics studied in mechanical engineering.
- B3. Learn methods for sketch functions.
- B4. Learn and recruit Logarithmic and Trigonometric functions in the related mathematics models.
- B5. Be able to apply differential equations in engineering problems and applications.
- B6. Work in groups and function on multi-disciplinary teams.
- B7. Understand professional, social and ethical responsibilities.
- B8. Communicate effectively.

Teaching and Learning Methods

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions.
- 6. Connection between Theory and Application.
- 7. Field Trips.
- 8. Extracurricular Activities.
- 9. In- and Out-Class oral conservations.

Assessment methods

- 1. Lab
- 2. Quizzes and exams
- 3. homework
- 4. assignments

C. Affective and value goals

C1. Ability to analyze.

- C2. Ability to solve problems.
- C3. Ability to calculate the results.

Teaching and Learning Methods

- 1. Lectures
- 2. Homework
- 3. Lab. Experiments.
- 4. Discussions

Assessment methods

- 1. Quizzes and exams
- 2. homework
- 3. Lab
- 4. assignments

- D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)
 - D1. Ability to carry out Independent study to take notes, to carry out background reading.
 - D2. Problem Solving based on understanding.
 - D3. Ability to learn and remember key facts.
 - D4. Self-discipline and self-motivation.

10. Co	10. Course Structure										
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method						
1	4	Items A1,A2.A4	Complex Number	C1,C2,C3	Weekly Quizzes						
2	4	Items A1,A2.A4	Determinates Matrix, properties, operations	C1,C2,C3							
3	4	Items A1,A2.A4	Review of functions Limits, continuity, derivatives	C1,C2,C3							

4	4	Items A1,A2.A4	Transcendental functions Inverse functions, Trigonometric functions	C1,C2,C3	
5 and 6	8	Items A1,A2.A3.A4	Inverse Trigonometric functions	C1,C2,C3	
7	4	Items A1,A2.A3.A4	Indeterminate forms and L'Hopital's R	C1,C2,C3	
8	4	Items A1,A2.A3.A4	Differentiation, differentiation rules	C1,C2,C3	
9	2	Items A1,A2.A3.A4	Derivatives of trigonometric functions	C1,C2,C3	
10	2	Items A1,A2.A3.A4	Derivatives of the inverse trigonometric functions	C1,C2,C3	
11	4	Items A1,A2.A3.A4	Natural logarithms	C1,C2,C3	
12	4	Items A1,A2.A3.A4	The exponential function	C1,C2,C3	

13 and 14	8	Items A1,A2.A3.A4	Hyperbolic functions and their inverse	C1,C2,C3	
15, 16, and 17	12	Items A1,A2.A3.A4	Integration-the definite integral	C1,C2,C3	
18 and 19	8	Items A1,A2.A3.A4	Indefinite integrals	C1,C2,C3	
20 and 21	8	Items A1,A2.A3.A4	Substitution and Area between curves	C1,C2,C3	
22, 23, and 24	12	Items A1,A2.A3.A4	Techniques of integration, basic integration formulas, integration by parts, integration of rational functions by partial fractions, trigonometric substitutions, integral Tables	C1,C2,C3	
25 and 26	8	Items A1,A2.A3.A4	Applications of definite integrals- Volumes by Slicing and Rotation about Axis	C1,C2,C3	

27, 28, 29, and 30		Items A1,A2.A3.A4	Differential Equations First order differential equations, variable separable, homogeneous, linear, exact first order, special first order equations (Bernoulli's differential equations, non-exact differential equation).	C1,C2,C3	
--------------------------	--	----------------------	---	----------	--

11. Infrastructure

- 1. Books Required reading:
- "Thomas Calculus" G. Thomas, M. Weir, et al., 11th edition, 2004.
- "Calculus II"; by Paul Dawkins, 2007.
- "Engineering Mathematics", by John Bird, 5th edition, Elsevier Ltd., 2007.
- "Engineering Mathematics", by K.A.
 Stroud, First edition, MACMILLAN and CO LTD, 1970.
- "Theory and Problems of Advanced Calculus", by Robert Wrede and Murray R. Spiegel, Second Edition, McGRAW-HILL, 2002.

2. Main references (sources)	
A- Recommended books and references (scientific journals, reports).	 Howard, A. et. Al. (2008). Calculus. McGraw-Hill Papers. Faddeev, L. D., and P. N. Pyatov. "The differential calculus on quantum linear groups." Fifty Years of Mathematical Physics: Selected Works of Ludwig Faddeev. 2016. 510-522. Kalton, Nigel, and Lutz Weis. "The \$ H^{\infty} \$-Functional Calculus and Square Function Estimates." arXiv preprint arXiv:1411.0472 (2014). Abadi, Martín, Bruno Blanchet, and Cédric Fournet. "The Applied Pi Calculus: Mobile Values, New Names, and Secure Communication." Journal of the ACM (JACM) 65.1 (2017).
B-Electronic references, Internet sites	

12. The development of the curriculum plan

Maintaining Continuous development of academic curricula in line with the scientific development.

TEMPLATE FOR COURSE SPECIFICATION

ELECTRONICS I

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Electronics I/ COE 103
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1st and 2nd Academic Semesters 2023 – 2022

6. Number of hours tuition (total)	150 hrs totally. 3 hrs. Per week /Theory and 2 hrs. per week/ Lab.
7. Date of production/revision of this specification	October/2022

8. Aims of the Course

A1. How to use the learned skills to understand, derive, and solve the equations in various objects (e.g. Electrical circuits II, Engineering Analysis, Electronics II, Communications, etc.)

A2. Representation of an introduction to the following course (Electronics II).

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A. Cognitive goals.

- A1. Design simple circuits that depend on diode characteristics.
- A2. Solve problems related to diode circuit.
- A3. Solve the problem related to transistor circuit.
- A4. Design simple circuits that depend on transistor characteristics.

- B. The skills goals special to the course.
 - B1. Acquire good knowledge in the atomic structure and crystalline structures.
 - B2. The differences between the insulators, conductors, and semiconductors.
 - B3. Recognizing the properties and differences between n and p material and the formation of them.
 - B4. The principle of operation of the diode, the IV characteristics and the equivalent models of the diode.
 - B5. A good knowledge of different diode applications.
 - B6. The principle of BJT transistor construction, operation principle and transistor analysis for different configurations.
 - B7. The dc biasing and operating point of the different configurations of BJT transistors.
 - B8. A basic understanding of the BJT transistor as a switch.

Teaching and Learning Methods

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Lab. Experiments.
- 5. Tests and Exams.
- 6. In-Class Questions and Discussions.
- 7. Connection between Theory and Application.
- 8. Field Trips.
- 9. Extracurricular Activities.
- 10. Seminars.
- 11. In- and Out-Class oral conservations.

Assessment methods

- 1. Lab
- 2. Quizzes and exams
- 3. homework
- 4. assignments
- C. Affective and value goals
 - C1. Ability to analyze.
 - C2. Ability to solve problems.
 - C3. Ability to calculate the results.

Teaching and Learning Methods

- 5. Lectures
- 6. Homework
- 7. Lab. Experiments.
- 8. Discussions

Assessment methods

- 1. Quizzes and exams
- 2. homework
- 3. Lab
- 4. assignments

- D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)
 - D1. Ability to carry out Independent study to take notes, to carry out background reading.
 - D2. Problem Solving based on understanding.
 - D3. Ability to learn and remember key facts.
 - D4. Self-discipline and self-motivation.

10. Co	10. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
	2 the. 1 tut.	Item A1	Atom structures	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
2	2 the. 1 tut.	item A2	Energy bands, insulators, conductors	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
3	2 the. 1 tut.	item A3	Semi-conductor	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
	2 the. 1 tut.	item A3	Type of semi-conductor	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
	2 the. 1 tut.	item A4	PN-junction	From 1 to12 of T-Methods	From 1 to 4 of A-Methods

6	2 the. 1 tut.	item A4	Forward and reserved biased	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
7	2 the. 1 tut.	item A4	Diode characteristics	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
8	2 the. 1 tut.	item A4	Diode equation	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
9	2 the. 1 tut	item A4	Diode equivalent circuit	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
10	2 the. 1 tut.	item A5	Diode applications: switching	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
11	2 the. 1 tut.	item A5	Rectifier circuits	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
12	2 the. 1 tut.	item A5	Clipping circuit	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
13	2 the. 1 tut.	item A5	Clipping circuit	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
14	2 the. 1 tut.	item A5	Clamping circuit	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
15	2 the. 1 tut.	item A5	Clamping circuit	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
16	2 the. 1 tut.	item A5	Regulators	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
17	2 the. 1 tut.	item A5	Zener diode	From 1 to12 of T-Methods	From 1 to 4 of A-Methods

	a 1	• • •		T 1 10 0	
18	2 the. 1 tut.	item A5	Logic circuits	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
19	2 the. 1 tut.	item A5	Special type diodes	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
20	2 the. 1 tut.	item A6	Bipolar transistor	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
21	2 the. 1 tut.	item A6	Configuration, operation	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
22	2 the. 1 tut.	item A6	C.B configuration	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
23	2 the. 1 tut.	item A6	C.E configuration	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
24	2 the. 1 tut.	Item A6	C.C configuration	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
25	2 the. 1 tut.	item A7	D.C biasing	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
26	2 the. 1 tut.	item A7	Biasing Circuits	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
27	2 the. 1 tut.	item A7	Biasing Circuits (continued)	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
28	2 the. 1 tut.	item A7	Load line analysis	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
29	2 the. 1 tut.	item A7	BJT Design	From 1 to12 of T-Methods	From 1 to 4 of A-Methods
30	2 the. 1 tut.	item A7	Transistor switching networks		

11. Infrastructure	
1. Books Required reading:	 "Electronic Devices and Circuit Theory", Robert Boylestad, Louis Nashelsky, 10th Edition, 2009. "Semiconductor Physics and Devices", Donald A. Neamen, 3rd edition, 2003" "Microelectronic Circuits", Sedra, Smith, Fourth edition or Fifth edition, Oxford University Press, 1998-2003.
2. Main references (sources)	
A- Recommended books and references (scientific journals, reports).	none
B-Electronic references, Internet sites	none

12. The development of the curriculum plan

Maintaining Continuous development of academic curricula in line with the scientific development.

TEMPLATE FOR COURSE SPECIFICATION

ELECTRICAL CIRCUITS I

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad		
2. University Department/Centre	Computer Engineering Department (COED)		
3. Course title/code	Electrical Circuits I / COE 104		

4. Modes of Attendance offered	of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The Annual System is composed of 30-week regular subjects. The laboratory is an annual system, the first course, DC circuits due to health conditions and the Covid-19 pandemic. We will accredit an electronic laboratory during the month, with students attending one week of the laboratory, to familiarize students with the laboratory and equipment and teach them to use and connect components and measuring devices in the correct and accurate manner. The second course is the alternating current laboratory with the same system for the first course. The theoretical course is reinforced in the laboratory. The Annual System is		
5. Semester/Year	1st and 2nd Academic Semesters 2022 – 2023		
6. Number of hours tuition (total)	150 hrs. / 5 hrs., per week 90 hrs. /3 hrs. per week Theory. 60 hrs. / 2 hrs. per week Lab.		
7. Date of production/revision of this Specification	October/ 2022		

8. Aims of the Course

A1. Explain and analyze the voltage/current relationships and operational characteristics of resistors, inductors, capacitors, and voltage and current sources.

- A2. Explain and analyze different electrical circuit morphologies. In particular; series and parallel circuit structures, equivalent circuit configurations arrived at by the combination of series and parallel circuit elements such as resistors, inductors, capacitors, current and voltage sources, equivalent circuit configurations arrived at using network theorems such as; Thevenin and Norton equivalent circuits, superposition, and source transformations.
- A3. Explain and analyze power and energy dissipation and distribution for DC & AC circuits composed of the elements listed in the first objective.
- A4. Design simple electrical circuits, with DC & AC sources, that satisfy specific functional requirements.
 - A5. Explain and analyze the voltage/current relationships and operational characteristics of resistors, inductors, capacitors, and voltage and current sources.
 - A6. Explain and analyze different electrical circuit morphologies. In particular; series and parallel circuit structures, equivalent circuit configurations arrived at by the combination of series and parallel circuit elements such as resistors, inductors, capacitors, current and voltage sources, equivalent circuit configurations arrived at using
 - A7. Explain and analyze power and energy dissipation and distribution for AC circuits composed of the elements listed in the first objective.
 - A8. Design simple electrical circuits, with AC sources, that satisfy specific functional requirements.

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A. Cognitive goals.

- A1. Electricity and Magnetism
- A2. Solution of linear algebraic equations
- A3. Matrix operations and inverse of a matrix
- A4. Complex variables
- A5. Differential calculus
- A6. Integral calculus

- B. The skills goals special to the course.
 - A student who successfully fulfills the course requirements will have demonstrated:
 - B1. An ability to define and explain the meaning/function of charge, current, voltage, power, energy, R, L, C, the op-amp, and the fundamental principles of Ohm's law, KVL and KCL including an understanding of electrical safety and the effect of current on humans.
 - B2. An ability to write the equilibrium equations for a given network and solve them analytically, for the steady state (DC and AC/phasor) solution.
 - B3. An ability to state and apply the principles of superposition, linearity, source transformations, and Thevenin/Norton equivalent circuits to simplify the analysis of circuits and/or the computation of responses.
 - B4. An in depth understanding of the behavior of inductances and capacitances, and differentiating

- A5. An ability to qualitatively and quantitatively predict and compute the steady state AC responses of basic circuits using the phasor method.
- B6. An ability to compute effective and average values of periodic signals and compute the instantaneous and average powers delivered to a circuit element.
- B7. An ability to compute the complex power associated with a circuit element and design a circuit to improve the power factor in an AC circuit.
- B8. An ability to determine the conditions for maximum power transfer to any circuit element.
- B9. Principles of 3-phase circuits.

Teaching and Learning Methods

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Lab. Experiments.
- 5. Tests and Exams.
- 6. In-Class Questions and Discussions.
- 7. Connection between Theory and Application.
- 8. Field Trips.
- 9. Extracurricular Activities.
- 10. Seminars.
- 11. In- and Out-Class oral conservations.
- 12. Reports, Presentations, and Posters.

Assessment methods

- 1. Lab
- 2. Quizzes and exams
- 3. homework
- 4. assignments

C. Affective and value goals

- C1. Ability to analyze.
- C2. Ability to solve problems.
- C3. Ability to calculate the results.

Teaching and Learning Methods

- 1. Lectures
- 2. Homework
- 3. Lab. Experiments.
- 4. Discussions

Assessment methods

- 1. Quizzes and exams
- 2. homework
- 3. Lab
- 4. assignments

- D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)
 - D1. Ability to carry out Independent study to take notes, to carry out background reading.
 - D2. Problem Solving based on understanding.
 - D3. Ability to learn and remember key facts.
 - D4. Self-discipline and self-motivation.

10. Co	10. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1	2 the. 1 tut.	items 1,2,3 of section 6	Introduction and color coding , temperature effect	From 1 to12 of section 11	From 1 to 4 of section 12
2	2 the. 1 tut. 2 exp.	items 1,2,3 of section 6	Introduction and color coding , temperature effect	From 1 to12 of section 11	From 1 to 4 of section 12
3	2 the. 1 tut. 2 exp.	items 1,2,3 of section 6	Sources and source transformation	From 1 to12 of section 11	From 1 to 4 of section 12
4	2 the. 1 tut. 2 exp.	items 1,2,3 of section 6	Ohm's law, equivalent resistance	From 1 to12 of section 11	From 1 to 4 of section 12
5		items 1,2,3 of section 6	Ohm's law, equivalent resistance	From 1 to12 of section 11	From 1 to 4 of section 12

6	2 the. 1 tut. 2 exp.	items 1,2,3 of section 6	DC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
7	2 the. 1 tut. 2 exp.	items 1,2,3,4of section 6	DC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
8	2 the. 1 tut. 2 exp.	items 1,2,3,4of section 6	DC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
9	2 the. 1 tut. 2 exp.	items 1,2,3,4,5 of section 6	DC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
10	2 the. 1 tut. 2 exp.	items 1,2,3,4,5 of section 6	DC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
11	2 the. 1 tut. 2 exp.	items 1,2,3,4,5,6 of section 6	DC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
12	2 the. 1 tut. 2 exp.	items 1,2,3,4,5,60f section 6	DC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of article 12
13	2 the. 1 tut. 2 exp.	items 1,2,3,4,5,6, of section 6	DC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
14	2 the. 1 tut. 2 exp.	items 1,2,3,4,5,60f section 6	Star Delta transformation	From 1 to12 of section 11	From 1 to 4 of section 12
15	2 the. 1 tut. 2 exp.	items 1,2,3,4,5,6of section 6	Power calculation	From 1 to12 of section 11	From 1 to 4 of section 12
16	2 the. 1 tut. 2 exp.	Items7,8,9of section 15	Introduction to AC signals	From 1 to12 of section 11	From 1 to 4 of section 12
17	2 the. 1 tut. 2 exp.	Items7,8,9of section 15	Average value and RMS value		From 1 to 4 of section 12

18	2 the. 1 tut. 2 exp.	Items7,8,9of section 15	Capacitor , Inductor ,	From 1 to12 of section 11	From 1 to 4 of section 12
19	2 the. 1 tut. 2 exp.	Items9,10,11 ,12of section 15	AC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
20	2 the. 1 tut. 2 exp.	Items9,10,11 ,12of section 15	AC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
21	2 the. 1 tut. 2 exp.	Items9,10,11 ,12of section 15	AC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
22	2 the. 1 tut. 2 exp.	Items9,10,11 ,12of section 15	AC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
23	2 the. 1 tut. 2 exp.	Items9,10,11 ,12of section 15	AC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
24	2 the. 1 tut. 2 exp.	Items9,10,11 ,12of section 15	AC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
25	2 the. 1 tut. 2 exp.	Items9,10,11 ,12of section 15	AC circuit analysis methods	From 1 to12 of section 11	From 1 to 4 of section 12
26	2 the. 1 tut. 2 exp.	items 13,14, of section 15	Power Calculation	From 1 to12 of section 11	From 1 to 4 of section 12
27	2 the. 1 tut. 2 exp.	items 13,14, of section 15	Power Calculation	From 1 to12 of section 11	From 1 to 4 of section 12
28	2 the. 1 tut. 2 exp.	items 13,14, of section 15	Power triangle	From 1 to12 of section 11	From 1 to 4 of section 12
29	2 the. 1 tut. 2 exp.	items 13,14, of section 15	Power factor correction, Resonance	From 1 to12 of section 11	From 1 to 4 of section 12
30	2 the. 1 tut. 2 exp.	item 15 of section 15	Three phase circuits	From 1 to12 of section 11	From 1 to 4 of section 12

11. Infrastructure	
1. Books Required reading:	 Electrical Circuits, 2nd edition, Nilson, 1986. Fundamentals of Electric Circuits", C.K. Alexander and M.N.O. Sadiku, McGraw Hill, 4th edition, 2009.2. "Basic Engineering Circuit Analysis", J. D. Irwin, Fourth edition, Macmillan, most recent edition. Electrical Devices and Circuit theory, 9th edition, Boylestad, 2006.
2. Main references (sources)	

A- Recommended books and references (scientific journals, reports).	 Electrical Circuit theory and Technology, 4th edition, Bird, 2010. Engineering Circuit Analysis, 7th edition, Hayt and Kemmerly,2007. Introductory Circuit Analysis, 5th edition, Bolyestad, A Textbook of Electical Technology, Thiraja, 2009. Introduction to Electric Circuits (9th Edition) by Dorf and Svoboda, John Wiley & Sons (2013). ASEECircuitAnalysis_in_MATLAB_and_S imulink Matlab - Electronics and Circuit Analysis using Matlab The_Analysis_and_Design_of_Linear, 8th edition (2016) Mathematical_Foundations_for_Linear (2016)
B-Electronic references, Internet sites	Laboratory experiments in the Measurements Lab of the department. Available websites related to the subject. Extracurricular activities.

12. The development of the curriculum plan

Maintaining Continuous development of academic curricula in line with the scientific development.

TEMPLATE FOR COURSE SPECIFICATION

FUNDAMENTALS OF DIGITAL SYSTEMS

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Fundamentals of Digital System / COE 105
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1st and 2nd Academic Semesters 2023 – 2022

6. Number of hours tuition (total)	90 hrs. /3 hrs. Per week Theory. 60 hrs. / 2 hrs. per week Lab.
7. Date of production/revision of this Specification	October/ 2022

8. Aims of the Course

- A1. Define the problem (Inputs and Outputs), write its functions.
- A2. Implement functions using digital circuit (Combinational or Sequential).
- A3. Minimize functions using any type of minimizing algorithms (Boolean algebra, Karnaugh-Map or Tabulation Method).
- A4. Have knowledge in analyzing and designing procedures of Combinational and Sequential circuits.

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A. Cognitive goals.

- A1. Number system
- A2. Digital Codes
- A3. Logic Gates
- A4. Boolean algebra
- A5. The Karnaugh Map
- A6. Arithmetic circuits
- A7. Sequential Circuits

B. The skills goals special to the course

A student who successfully fulfills the course requirements will have demonstrated:

- B1. Learning about the different number systems.
- B2. Learning the arithmetic operations related to different number systems.
- B3. Learning the different logic gates of computer system and their work.
- B4. Ability to design, simplify and implement different logical and arithmetic circuits that considered the basic of digital system.
- B5. Ability to design, simplify and implement different sequential circuits, counters and shift registers.
 - B6. Learning the basics of computer hardware including memory, registers, arithmetic and logic unit, and bus system.

Teaching and Learning Methods

1. Lectures.

- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions.
- 6. Connection between Theory and Application.
- 7. Field Trips.
- 8. Extracurricular Activities.
- 9. In- and Out-Class oral conservations.

Assessment methods

- 1. Lab
- 2. Quizzes and exams
- 3. homework
- 4. assignments
- C. Affective and value goals
 - C1. Imagination
 - C2. Analyzing
 - C3. Ability to work within the team.
 - C4. Problem solving, by applying the learning outcomes and subject -specific skills to solve practical design problems.

Teaching and Learning Methods

- 1. Lectures
- 2. Homework
- 3. Lab. Experiments.
- 4. Discussions

Assessment methods

- 1. Quizzes and exams
- 2. homework
- 3. Lab
- 4. assignments

- D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)
 - D1. Ability to carry out Independent study to take notes, to carry out background reading.
 - D2. Problem Solving based on understanding.
 - D3. Ability to learn and remember key facts.
 - D4. Self-discipline and self-motivation.

10. Cc	10. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1-2	2 theory 1 tutorial	A1	Number system	From 1 to9 of Teaching and	From 1 to3 of Assessment
3-4	2 theory 1 tutorial 2 labs.	A2, A6	Arithmetic Operation	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
5	2 theory 1 tutorial 2 labs.	A1, A2	Digital Codes	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method

6	2 theory 1 tutorial 2 labs.	A3, A6	Logic Gates	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
7-9	2 theory 1 tutorial 2 labs.	A4, A6	Boolean algebra	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
10-11	2 theory 1 tutorial 2 labs.	A4	The Karnaugh Map	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
12-13	2 theory 1 tutorial 2 labs.	A4	Implementation of Logic Circuit	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
14-15	2 theory 1 tutorial 2 labs.	A2, A6	Basic Adders	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
16-17	2 theory 1 tutorial 2 labs.	A2, A6	Arithmetic circuits	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
18	2 theory 1 tutorial 2 labs.	A2, A6	Comparators	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
19	2 theory 1 tutorial 2 labs.	A2, A6	BCD Adder	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method

20	2 theory 1 tutorial 2 labs.	A6	Decoders and encoders, case studies: Seven Segment decoder, Memory Decoder, Priority Encoder	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
21	2 theory 1 tutorial 2 labs.	A6	Multiplexers and De- multiplexers, case studies: Chanel Multiplexing and Demulutiplexing	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
22	2 theory 1 tutorial 2 labs.	A5	Sequential Circuits	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
23-24	2 theory 1 tutorial 2 labs.	A5, A6	Asynchronous Counter	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
25-27	2 theory 1 tutorial 2 labs.	A5, A6	Synchronous Counter	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
28-30	2 theory 1 tutorial 2 labs.	A5, A6	Shift registers, linear feedback shift register	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method

11. Infrastructure	
1. Books Required reading:	 Fundamentals of logic design, 5th edition, Roth, 2004, Thomson learning, Inc. Digital electronics, 5th edition, Bignell, 2007, Thomson learning, Inc. Digital logic design, 4th edition, Holdsworth, 2002, Elsevier. Digital systems,10th edition, Tocci, 2007, pearson prentice hall Digital fundamentals, 10th edition, Floyd, 2009, Pearson prentice hall. Digital design, 4th edition, Mano, 2007, Pearson prentice hall.
2. Main references (sources)	
A- Recommended books and references (scientific journals, reports).	None
B-Electronic references, Internet sites	Laboratory experiments in the (logic Lab.) of the department. http://www.electronics-tutorials.ws/combination

12. The development of the curriculum plan

Maintaining Continuous development of academic curricula in line with the scientific development.

TEMPLATE FOR COURSE SPECIFICATION

COMPUTER PROGRAMMING METHODOLOGY

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Computer Programming Methodology / COE 106
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.

5. Semester/Year	1st and 2nd Academic Semesters 2022 – 2023
6. Number of hours tuition (total)	150 hrs. / 5 hrs., per week
7. Date of production/revision of this Specification	October/ 2022

8. Aims of the Course

A1. This course aims to help students to learn how to use Python programming language to solve real-life and scientific problems. The objective of the course is to provide students with confidence of their ability to write small useful programs.

- A2.In addition, the course covers some details of essential programming topics like: program debugging, testing and algorithm development.
- A3. Students learn best by experimenting a plenty of programs that that solve useful and interesting problems. The problems tackled cover a wide range of general, and scientific applications although none of them require specialist knowledge.
- A4. Students will test all their homework programs included some examples either on a computer in the class laboratory or on their personal computers under supervisions of our staff.
- A5. Quizzes are placed at the end of each section so both lecturer and students can check whether they are on the right track.
- A6. The programming exercises are also graded, allowing the students gradually to attempt more difficult problems as their confidence and experience increase.
- 9. Learning Outcomes, Teaching ,Learning and Assessment Method
 - A. Cognitive goals.
 - A1. Computers and their uses/ Hardware/Software.
 - A2. Programming languages/How to use/ run programs.
 - A3. Design and representation of algorithms/ implementation / testing and verification/ program A4. Complex variables.
 - A5. Programming in Python/basic syntax: interactive mode programming and script mode programming.
 - A6. Handling multiple data types and type conversions.

- A7. Python program control: Conditions, boolean logic, logical operators, ranges.
- A8. Functions in Python.
- A9. Python classes and OOP.
- B. The skills goals special to the course.

Upon successful completion of the course, students should be able to

- B1. Read given source code in Python and understand its behavior
- B2. Extend existing source code for new features
- B3. Write original source code to solve an engineering problem
- B4. Organize source code in a modular form.
- B5. Design and implement dynamic data structures using user-defined data types.
- B6. Read and write Python programs that use dynamic data structures.
- B7. Read and write Python programs that use structures.

Teaching and Learning Methods

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Lab. Experiments.
- 5. Tests and Exams.
- 6. In-Class Questions and Discussions.
- 7. Connection between Theory and Application.
- 8. Field Trips.
- 9. Extracurricular Activities.
- 10. Seminars.
- 11. In- and Out-Class oral conservations.
- 12. Reports, Presentations, and Posters.

Assessment methods

- 1. Lab
- 2. Quizzes and exams
- 3. homework
- 4. assignments

C. Affective and value goals

- C1. Ability to analyze.
- C2. Ability to program the idea.
- C3. Ability to excute.

Teaching and Learning Methods

- 5. Lectures
- 6. Homework
- 7. Lab. Experiments.
- 8. Discussions

Assessment methods

- 1. Quizzes and exams
- 2. homework
- 3. Lab
- 4. assignments

- D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)
 - D1. Ability to carry out Independent study to take notes, to carry out background reading.
 - D2. Problem Solving based on understanding.
 - D3. Ability to learn and remember key facts.
 - D4. Self-discipline and self-motivation.

10. Co	10. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1		From 1 to 8 of section 10	Computers and their uses/ Hardware/Software	From 1 to11 of section 11	From 1 to 4 of section 12
2	3 the.	From 1 to 8 of section 10	Programming languages/How to use/ run programs	From 1 to11 of section 11	From 1 to 4 of section 12
3		From 1 to 8 of section 10	Using computers in problem solving/ requirement specifications/ analysis	From 1 to11 of section 11	From 1 to 4 of section 12
			Design and representation of algorithms/ implementation / testing and verification/ program	From 1 to11 of section 11	From 1 to 4 of section 12
-		of section 10	Programming in Python/basic syntax: interactive mode programming and script mode programming	From 1 to11 of section 11	From 1 to 4 of section 12
6		of section 10	Python data types: variables, assignments and numerical types.	From 1 to11 of section 11	From 1 to 4 of section 12
7	3 the. 1 tut. 2 exp.		Arithmetic and logical operators, precedence of operators	From 1 to11 of section 11	From 1 to 4 of section 12
0		From 1 to 8 of section 10	Numeric data type: using the Math library	From 1 to11 of section 11	From 1 to 4 of section 12
0	3 the. 1 tut. 2 exp.		String data type: simple string processing and string manipulation	From 1 to11 of section 11	From 1 to 4 of section 12
10			Python text files: reading from and writing to a file	From 1 to11 of section 11	From 1 to 4 of section 12
11			Python lists: Traversing a list and list operations	From 1 to11 of section 11	From 1 to 4 of section 12

	3 the.	From 1 to 8	Duthon distionance according	From 1 to11 of	
12	1 tut. 2 exp.	of section 10	Python dictionary: accessing values in dictionary, updating dictionary and deleting dictionary elements	section 11	From 1 to 4 of section 12
13	3 the. 1 tut. 2 exp.		Handling multiple data types and type conversions	From 1 to11 of section 11	From 1 to 4 of section 12
14	3 the. 1 tut. 2 exp.		Python modules: The import statement	From 1 to11 of section 11	From 1 to 4 of section 12
15	3 the. 1 tut. 2 exp.		Python date & time: the time module and the calendar module	From 1 to11 of section 11	From 1 to 4 of section 12
16	3 the. 1 tut. 2 exp.		Simple graphics: "turtle" module; simple 2d drawing - colors, shapes.	From 1 to11 of section 11	From 1 to 4 of section 12
17	3 the. 1 tut. 2 exp.		Python program control: Conditions, boolean logic, logical operators, ranges.	From 1 to11 of section 11	From 1 to 4 of section 12
18	3 the. 1 tut. 2 exp.		If statement, nested if statement, if-else if ladder else	From 1 to11 of section 11	From 1 to 4 of section 12
19	3 the. 1 tut. 2 exp.	From 1 to 8 of section 10	Loops: while statement.	From 1 to11 of section 11	From 1 to 4 of section 12
20	3 the. 1 tut. 2 exp.	From 1 to 8 of section 10	Loops: for statement	From 1 to11 of section 11	From 1 to 4 of section 12
21	3 the. 1 tut. 2 exp.	From 1 to 8 of section 10	Nested loops	From 1 to11 of section 11	From 1 to 4 of section 12
22	3 the. 1 tut. 2 exp.		Skipping loop iterations break and continue.	From 1 to11 of section 11	From 1 to 4 of section 12
23	3 the. 1 tut. 2 exp.		Using loops for accessing data in lists, files	From 1 to11 of section 11	From 1 to 4 of section 12

24	3 the. 1 tut. 2 exp.		Functions in Python, new	From 1 to11 of section 11	From 1 to 4 of section 12
25		of section 10	5	From 1 to11 of section 11	From 1 to 4 of section 12
26			Functions in Python: Recursive functions.	From 1 to11 of section 11	From 1 to 4 of section 12
27		of section 10		From 1 to11 of section 11	From 1 to 4 of section 12
20	3 the. 1 tut. 2 exp.		Python classes and OOP: Inheritance, polymorphism and encapsulation.	From 1 to11 of section 11	From 1 to 4 of section 12
29	3 the. 1 tut. 2 exp.	From 1 to 8 of section 10		From 1 to11 of section 11	From 1 to 4 of section 12
30	3 the. 1 tut. 2 exp.	From 1 to 8 of section 10	Python classes and OOP: extending classes	From 1 to11 of section 11	From 1 to 4 of section 12

11. Infrastructure						
1. Books Required reading:	 Guttag, John. Introduction to Computation and Programming Using Python. Spring 2013 edition. MIT Press, 2013 Allen B. Downey. Think Python. Second edition. O'Reilly, 2007. 					
2. Main references (sources)						

A-Recommended books and references (scientific journals, reports).	 T. E. Oliphant, "Python for Scientific Computing," in Computing in Science & Engineering, vol. 9, no. 3, pp. 10-20, May- June 2007. Atanas Radenski. 2006. "Python first": a lab-based digital introduction to computer science. SIGCSE Bull. 38, 3 (June 2006), 197-201. Douglas Blank, Deepak Kumar, Lisa Meeden, and Holly Yanco. 2003. Pyro: A python-based versatile programming environment for teaching robotics. J. Educ. Resour. Comput. 3, 4, Article 1 (December 2003).
B-Electronic references, Internet sites	• Laboratory experiments in the (programming Lab) of the department.

12. The development of the curriculum plan

Maintaining Continuous development of academic curricula in line with the scientific development.

TEMPLATE FOR COURSE SPECIFICATION

FUNDAMENTALS OF COMPUTER SYSTEM

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the computer system and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Fundamentals of Computer System / COE107
4. Modes of Attendance offered	Annual System: There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-weeks regular subjects.

5. Semester/Year	Academic year 2023 – 2022
6. Number of hours tuition (total)	150 hrs. (Totally) 3 hrs. per week in class 2 hrs. per week in lab
7. Date of production/revision of this Specification	October / 2022

8. Aims of the Course

- A1. This course is intended for first class students. These students typically will have knowledge of how computer works, how to assemble and disassemble the computer and how to troubleshoot hardware and software issues and these students will be able to have a career in IT.
- A2. The students will enhance the capability of using Microsoft Word, Excel, and PowerPoint, because of the wide uses of these applications in the field of education, scientific research and the preparation of research reports.

9. Learning Outcomes, Teaching, Learning and Assessment Method

A. Cognitive goals.

- A1. Introduction to Personal Computer.
- A2. Describe a computer system.
- A3. Fundamentals of Operating System (OS).
- A4. Fundamentals of Laptops and Portable devices.
- A5. Fundamentals for networks, explain the principle of networking.
- A6. Professional use of Microsoft Application (Word, Excel, and Power Point).

B. The skills goals special to the course.

The student will be able to:

- B1. Deal with the computer system.
- B2. Identify the names, purposes, and characteristics of system units.
- B3. Identify the names, purposes, and characteristics of CPU.
- B4. Install and troubleshoot the CPU.
- B5. Identify the names, purposes, and characteristics of motherboard.
- B6. Install and troubleshoot the motherboard.
- B7. Identify the names, purposes, and characteristics of adapter cards.
- B8. Install and troubleshoot the adapter cards.
- B9. Identify the names, purposes, and characteristics of memory.
- B10. Install and troubleshoot memory.
- B11. Identify the names, purposes, and characteristics of storage devices.
- B12. Install and troubleshoot the storage devices.
- B13. Understand the purpose of the operating system.
- B14. Install an operating system.
- B15. Navigate an operating system GUI
- B16. Apply preventive maintenance techniques for operating systems.
- B17. Troubleshoot operating systems.
- B18. Identify serial and parallel ports that have been standard on PCs since the beginning, as well as the universal serial bus (USB, which has replaced the older serial and parallel ports) and IEEE 1394 also called FireWire interfaces.
- B19. Install and troubleshoot the system units.

- B20. Learn the computer security against electronic intrusion methods and software license.
- B21. Identify the purpose and components of laptops and other portable devices. and troubleshoot laptops and portable devices. apply preventive maintenance techniques for laptops and portable devices.
- B22. Identify video hardware devices and their functions.
- B23. Identify audio hardware devices and their functions.
- B24. Identify various internet connection technologies.
- B25. Identify names, purposes, and characteristics of input devices and their operation.
- B26. Identify names, purposes, and characteristics of output devices and their operation.
- B27. Learn the principles of networking, the basic networking concepts, and technologies.
- B28. Use Microsoft Applications (Word, Excel, and Power point) professionally.
- B29. Be familiar with minimum key features of Microprocessor and assembly language in simplest structures.

Teaching and Learning Methods

- 1. Lectures.
- 2. Lab. Experiments.
- 3. Tutorials.
- 4. Homework and Assignments.
- 5. Tests and Exams.
- 6. In-Class Questions and Discussions.
- 7. Seminars.
- 8. In- and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment methods

- 1. Lab reports.
- 2. Quizzes and exams.
- 3. Homework.
- 4. Assignments.
- C. Affective and value goals
 - C1. Ability to install.
 - C2. Ability to troubleshoot.
 - C3. Ability to maintain.

Teaching and Learning Methods

- 1. Lectures
- 2. Lab. Experiments.
- 3. Virtual classroom (E-learning)

Assessment methods

- 1. Quizzes and exams
- 2. Homework
- 3. Lab reports
- 4. Assignments
- D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)

- D1. Ability to carry out independent study to take notes, to carry out background reading.
- D2. Problem Solving based on understanding.
- D3. Ability to learn and remember key-facts.
- D4. Self-discipline and self-motivation.

Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1	3 The. 2 Lab.	B1, B2	The. (Development of the PC) Lab. (Experiment No.1: - Identifying Computer Components)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
2	3 The. 2 Lab.	B1, B2	The. (Development of the PC) Lab. (Experiment No.2: Identifying Tools and Software used with personal computers and knowing their purposes.	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
3	3 The. 2 Lab.	B1, B2	The. (PC Components, Features, and System Design) Lab. (Experiment No.3: - Computer Assembling and Disassembling)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
4	3 The. 2 Lab.	B3, B4	The. (Processor Types and Specifications) Lab. (Experiment No.4: - Installing Windows Operating System	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
5	3 The. 2 Lab.	B5, B6	The. (Power Supplies) Lab. (Experiment No.4: - Installing Windows Operating System	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)

6	3 The. 2 Lab.	B5, B6	The. (Motherboards and Buses) Lab. Experiment No.5: -How do you navigate within an operating system GUI and CLI	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
7	3 The. 2 Lab.	B5, B6	The. (Motherboards and Buses) Lab. Experiment No.5: -How do you navigate within an operating system GUI and CLI	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
8	3 The. 2 Lab.	B7, B8	The. (BIOS) Lab. Experiment No.6: -Explore Administrative Tools	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
9	3 The. 2 Lab.	B9, B10	The. (Memory) Lab. Experiment No.6-Explore Administrative Tools	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
10	3 The. 2 Lab.	B9, B10	The. (Memory) Lab. Experiment No.7: - Preventive maintenance procedure for OS	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
11	3 The. 2 Lab.	B11, B12	The. (Hard disk Storage) Lab. Experiment No.7: - Preventive maintenance procedure for OS	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
12	3 The. 2 Lab.	B11, B12	The. (Flash and removable Storage) Lab. (Experiment No.8: - Using windows program, properties, and applications (computer	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
13	3 The. 2 Lab.	B11, B12	The. (Optical storage) Lab. (Experiment No.9: - Formal and Informal Email writing and managing (Google workspace)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
14	3 The. 2 Lab.	B13, B14, B15, B16, B17	The. (Introduction to operating system) Lab. (Experiment No.10: - Creating a Partition in Windows OS)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)

15	3 The. 2 Lab.	B18	The. (External I/O Interface) Lab. (Experiment No.11: -MS Word)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
16	3 The. 2 Lab.	B19	The. (PC Diagnostics, Testing, and Maintenance) Lab. (Experiment No.11: -MS Word)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
17	3 The. 2 Lab.	B19	The. (Building or Upgrading Systems) Lab. (Experiment No.11: -MS Word)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
18	3 The. 2 Lab.	B20	The. (Computer safety and software license) Lab. Experiment No.11: -MS Word)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
19	3 The. 2 Lab.	B21	The. (Laptop and Portable Devices) Lab. (Experiment No.12: - Identify laptop components and Laptop Assembling and disassembling)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
20	3 The. 2 Lab.	B22, B23	The. (Audio and Video hardware) Lab. (Experiment No.13: -MS Power point)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
21	3 The. 2 Lab.	B24	The. (Internet Connectivity) Lab. (Experiment No.13: -MS Power point)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
22	3 The. 2 Lab.	B25	The. (Input Device Types and Operation). Lab. (Experiment No.13: -MS Power point)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
23	3 The. 2 Lab.	B25	The. (Input Device Types and Operation). Lab. (Experiment No.14: -MS Excel)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)

24	3 The. 2 Lab.	B26	The. (Output Device Types and Operation). Lab. (Experiment No.14: -MS Excel)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
25	3 The. 2 Lab.	B26	The. (Output Device Types and Operation). Lab. (Experiment No.14: - MS Excel)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
26	3 The. 2 Lab.	B27	The. (Network Fundamentals) Lab. (Experiment No.15: - Networking UTP-cable configuration and testing)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
27	3 The. 2 Lab.	B27 B28	The. (Introduction to Microprocessor Structure) Lab. (Experiment No.15: - Networking PC to PC interface using UTP-cable, sharing folders, building small network using hub, LAN card and UTP cable)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
28	3 The. 2 Lab.	B29	The. (Introduction to Microprocessor Comparison among different processor types) Lab. (Experiment No.16: - installing MP emulator)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
29	3 The. 2 Lab.	B29	The. (Introduction to Microprocessor Assembly language) Lab. (Experiment No.16: - Writing code with assembly language using emulator)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)
30	3 The. 2 Lab.	B29	The. (Introduction to Microprocessor Assembly language) Lab. (Experiment No.16: - Writing code with assembly language using emulator)	From 1 to 9 of section (Teaching and Learning Methods)	From 1 to 4 of section (Assessment Methods)

11. Infrastructure				
1. Books Required reading:	 أ.م.د زياد محمد عبود, أ.د غسان حميد عبد المجيد, أ.م. د. امير حسين مراد, م. بلال كمال احمد, "أساسيات الحاسوب و 			
	تطبيقاته المكتبية ", الجزء الأول, الدار الجامعية للطباعة و			
	النشروالترجمة, 2014.			
	 أ.م.د زياد محمد عبود, أ.د غسان حميد عبد المجيد, م.د. مصطفى 			
	ضياء الحسني, "اساسيات الحاسوب و تطبيقاته المكتبية", الجزء			
	الثاني, الدار الجامعية للطباعة و النشروالترجمة , 2016.			
	 أ.م.د زياد محمد عبود, أ.د. غسان حميد عبد المجيد, أ.م. سهيل نجم 			
	عبود , م. م. عدنان خلف شذر , "اساسيات الحاسوب و تطبيقاته			
2. Main references (sources)	Scott Mueller, "UPGRADING AND REPAIRING PCs", 20 th edition, 2012.			
A- Recommended books and references (scientific journals, reports).	None			
B-Electronic references, Internet sites	none			

12. The development of the curriculum plan

Maintaining Continuous development of academic curricula in line with the scientific development.

Second Stage

TEMPLATE FOR COURSE SPECIFICATION Engineering Mathematics

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering
	University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Engineering Mathematics / COE 202
4. Modes of Attendance offered	Annual System: There is only one mode of delivery, which is a "Day Program". The students are full-time students and on campus. They attend a full-day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1st& 2nd / Academic Year 2022-2023
6. Number of hours tuition (total)	120 hrs. / 4 hrs. per week.
7. Date of production/revision of this specification	October/2022
9 Atma of the Common	

8. Aims of the Course:

- 1. As a brief description for the Goals and objectives, by the completion of the course the goals are:
- 2. How to relate the skills and concepts learned from Mathematics to understand Engineering Mathematics

- 3. How to use the learned skills to understand, derive, and solve the equations in various objects (e.g., Electronics II, DSP, Communications, Digital Control etc.)
- 4. Representation of an Introduction to advanced calculus.

9. Learning Outcomes, Teaching, Learning and Assessment Methods

A- Cognitive Goals

A1- Understanding the algebra of the Complex numbers and converting them to various forms.

A2- Applying useful topics of integration including numerical integration.

A3- Using Taylor polynomials to linearize functions and forming Taylor and Maclaurin series.

A4- Techniques for solving first order (linear or non-linear) differential equations, how to solve second and higher order (homogenous and non-homogenous) differential equations for determined and undetermined coefficients.\

A5- Using numerical methods to solve the ODE's using Euler and Runge-Kutta methods.

A6- Learning Laplace Transform and its applications in control systems.

A7- Acquiring Difference equations and Z-Transform to be used in DSP.

A8- Studying Fourier series and Transform to be used in Communications.

B- The skills goals special to the course

B1- How to relate the skills and concepts learned from Mathematic to understand Engineering Mathematics.

B2- How to use the learned skills to understand, derived, and solve the equations in various objects (e.g., Electronics II, DSP, Communications, Digital Control etc.)

B3- Representation of an introduction to advanced calculus.

Teaching and Learning Methods

- 1. Lectures.
- 2. Tutorials.

- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions.
- 6. The connection between Theory and Application.
- 7. Seminars.
- 8. In-and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.
- 4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor)

C- Affective and value goals

C1- An ability to read and comprehend mathematical literature at an appropriate level.

C2- An ability both to follow and correctly to construct mathematical proofs of appropriate degrees of complexity.

C3- An appreciation of the importance of proof, generalization, and abstraction in the logical development of formal theories.

Teaching and Learning Methods

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams

Assessment methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.
- 4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor)

D- General and Transferable Skills (other skills relevant to employability and personal development)

D1- Relying on online lectures using data show.

D2- Making the lecture more interactive by inclusion techniques.

10- Course Structure:

Week	Hours	ILOs	Unit/Module or Topic Title	Teaching	Assessment
	0.1	T: 10 0		Method	Method
1	3 the.	Item 1,2 of	Complex Numbers,	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	Operations, Polar and	of section 11	section 12
	0.1	D 1 (0	exponential form	D 1 1 10	
2	3 the.	From 1 to 3	Phasors and De Moivre	From 1 to 12	From 1 to 4 of
-	1 tut.	section 10	Theorem. Quiz	of section 11	section 12
3	3 the.	From 1 to 3	Orthogonal Functions and	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	Integrals, Integrations of	of section 11	section 12
	0.1	F 1 (2	continuous functions	D 1 + 10	
4	3 the.	From 1 to 3	Numerical Integration. Quiz	From 1 to 12	From 1 to 4 of
-	1 tut.	section 10		of section 11	section 12
5	3 the.	From 1 to 3	Taylor Polynomials and	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	Linearization	of section 11	section 12
6	3 the.	From 1 to 3	Taylor 2nd and n-order	From 1 to 12	From 1 to 4 of
-	1 tut.	section 10	polynomials, Remainder Term	of section 11	section 12
7	3 the.	Item 4,5 of	Taylor and Maclaurin series,	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	Quiz	of section 11	section 12
8	3 the.	Item 7 of	First-order ODE	From 1 to 12	From 1 to 4 of
-	1 tut.	section 10		of section 11	section 12
9	3 the.	Item 7 of	Second-order ODE	From 1 to 12	From 1 to 4 of
	1 tut.	section 10		of section 11	section 12
10	3 the.	Item 7 of	State-Space	From 1 to 12	From 1 to 4 of
	1 tut.	section 10		of section 11	section 12
11	3 the.	Item 1 to 5&	Numerical Methods, Euler and	From 1 to 12	From 1 to 4 of
	1 tut.	7 of section	Runge-Kutta	of section 11	section 12
		10			
12	3 the.	Item 7 of	Term Quiz	From 1 to 12	From 1 to 4 of
	1 tut.	section 10		of section 11	section 12
13	3 the.	Item 7 of	Laplace Transform	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	Introduction and properties	of section 11	section 12
14	3 the.	Item 6,7 of	Inverse Laplace Transform	From 1 to 12	From 1 to 4 of
	1 tut.	section 10		of section 11	section 12
15	3 the.	Item 5 of	Partial Fraction, Solving ODE	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	using LT	of section 11	section 12
16	3 the.	Item 5,6,8 of	Transfer Functions, Poles and	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	Zeros, Quiz	of section 11	section 12
17	3 the.	Item 9 of	Term Quiz	From 1 to 12	From 1 to 4 of
	1 tut.	section 10		of section 11	section 12
18	3 the.	Item 5,6,8 of	Difference Equations and Z-	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	Transform	of section 11	section 12
19	3 the.	Item 5,6,8 of	Design a digital controller,	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	Numerical solution of DE	of section 11	section 12
20	3 the.	Item 5,6,8 of	Partial Fraction, Solving ODE	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	using LT	of section 11	section 12
21	3 the.	Item 5,6,8 of	Transfer Functions, Poles and	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	Zeros, Quiz	of section 11	section 12
22	3 the.	Item 5,6,8 of	Z-Transform Introduction,	From 1 to 12	From 1 to 4 of
	1 tut.	section 10	properties	of section 11	section 12

23	3 the.	Item 5,6 & 8	Sampling c	ontinuous signal,	From 1 to 12	From 1 to 4 of
25	1 tut.	of section 10	relation of Z	e ,	of section 11	section 12
24	3 the.	Item 6,8 of	Inverse Z-Transform		From 1 to 12	From 1 to 4 of
27	1 tut.	section 10			of section 11	section 12
25	3 the.	Item 6,8 of	Partial Fra	ction, Solving DE	From 1 to 12	From 1 to 4 of
23	1 tut.	section 10	using ZT	ction, solving DE	of section 11	section 12
26	3 the.	Item 9 of	Term Quiz		From 1 to 12	From 1 to 4 of
20	1 tut.	section 10			of section 11	section 12
27	3 the.	Item 9 of	Fourier Ser	ies, trigonometric	From 1 to 12	From 1 to 4 of
21	1 tut.	section 10	and complex forms		of section 11	section 12
28	3 the.	Item 6 of	Fourier Transform		From 1 to 12	From 1 to 4 of
20	1 tut.	section 10			of section 11	section 12
29	3 the.	Item 9 of	Discrete Fo	urier Transform	From 1 to 12	From 1 to 4 of
2)	1 tut.	section 10	Distictero		of section 11	section 12
30	3 the.	Item 9 of	Term Quiz		From 1 to 12	From 1 to 4 of
50	1 tut.	section 10			of section 11	section 12
 1- Books Required reading: 2- Main references (sources) 				 Thomas Calculus, George B. Thomas, 11th Edition, 2005, Pearson Education Inc. Thomas CALCULUS George B. Thomas Maurice D. Weir Global Edition 2010 Croft et al., Engineering Mathematics A Foundation for Electronic, Electrical, Communications and Systems Engineering, 5th Ed., Pearson (2017). 		
A- Recommended books and references (scientific journals, reports)						
B- Electronic references, Internet sites						

12-The development of the curriculum plan

Continuous developing academic curricula in line with the scientific development

TEMPLATE FOR COURSE SPECIFICATION Electronics II

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering				
	University of Baghdad				
2. University Department/Centre	Computer Engineering Department (COED)				
3. Course title/code& Description	Electronics II / COE 203				
4. Modes of Attendance offered	Annual System: There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.				
5. Semester/Year	1st& 2nd / Academic Year 2023-2022				
6. Number of hours tuition (total)	150 hrs. (Totally) 3 hrs. per week in class 2 hrs. per week in lab				
7. Date of production/revision of this specification	October/2022				
8. Aims of the Course					
1- To understand the following:-					

- 2- Small signal Amplifier analysis and Design using BJTs.
- 3- FET structure, Biasing, and small signal Amplifier analysis and Design using FET.
- 4- Ideal operational amplifiers applications (linear and non-linear).
- 5- Basic understanding to negative feedback.
- 6- Oscillators and multivibrators.
- 7- Logic families and their developments.
- 8- Analog to digital converters (ADC) and digital to analog converters (DAC).
- 9- Semiconductor memories.

9. Learning Outcomes

A. Knowledge and Understanding:

A1. Small signal AC analysis of different configurations of BJT amplifiers.

A2. Field Effect Transistors basic structure, operation, and dc biasing.

A3. Small signal AC analysis of different configurations and types of FET amplifiers.

- A4. Ideal Operational amplifiers equivalent circuit, characteristics, and applications.
- A5. Basic understanding of negative feedback systems.
- A6. Oscillators principles of operation and different oscillator circuits.
- A7. 555 timers as multivibrators.
- A8. Different logic families and their developments.
- A9. DACs and ADCs.
- A10. Semiconductor memories.
- B. Subject-specific skills
- B1. design simple electronic circuits.
- B2. design amplification circuits according to the desired parameters.
- C. Thinking Skills
- C1. ability of optimal design.
- C2. ability of electronic measurements
- D. Personal Development

D1. Electronic device classification.

D2. H/W maintenance

Teaching and Learning Methods (T-methods)

- 1- Lectures.
- 2- Tutorials.
- 3- Homework and Assignments.
- 4- Lab. Experiments.
- 5- Tests and Exams.
- 6- In-Class Questions and Discussions.
- 7- Connection between Theory and Application.
- 8- Extracurricular Activities.

9- Seminars.

- 10- In- and Out-Class oral conservations.
- 11- Reports, Presentations, and Posters.

Assessment Methods (A-Methods)

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor)

10.Course Structure

week	Hours	ILOs	Topic title	Teaching method	Assessment Method
1	2 the.	Item A1	The re model of BJT transistors (ac	From 1 to 7 of	From 1 to 4 of
	1 tut.		model of BJTs) and common emitter fixed bias configuration ac analysis	(T-Methods)	(A-methods)
2	2 the.	Item A1	AC analysis of different BJT	From 1 to 7 of	From 1 to 4 of
	1 tut.		configurations	(T-Methods)	(A-methods)
3	2 the.	Item A1	Effect of load and source resistance	From 1 to 7 of	From 1 to 4 of
	1 tut.		on the ac gain	(T-Methods)	(A-methods)
4	2 the.	Item A1	Cascade configuration and design of	From 1 to 7 of	From 1 to 4 of
	1 tut.		BJT amplifiers.	(T-Methods)	(A-methods)
5	2 the.	Item A2	Field Effect Transistors basic	From 1 to 7 of	From 1 to 4 of
	1 tut.		construction and operation	(T-Methods)	(A-methods)

6	2 the.	Item A2	Transfer characteristics of different	From 1 to 7 of	From 1 to 4 of
0	1 tut.		FET amplifiers	(T-Methods)	(A-methods)
7	2 the.	Item A2	FET Biasing of different	From 1 to 7 of	From 1 to 4 of
/	1 tut.	Item A2	configurations	(T-Methods)	(A-methods)
8	2 the.	Item A2	FET Biasing of different	From 1 to 7 of	From 1 to 4 of
0	$\frac{2}{1}$ tut.	Itelli A2	configurations (continued)	(T-Methods)	(A-methods)
9	2 the.	Item A3	FET amplifiers ac analysis	From 1 to 7 of	From 1 to 4 of
9	2 the. 1 tut.	Itelli A3	TET amplifiers ac analysis	(T-Methods)	(A-methods)
10	2 the.	Item A3	FET amplifiers ac	From 1 to 7 of	From 1 to 4 of
10	1 tut.	Item A3	analysis(continued)	(T-Methods)	(A-methods)
11	2 the.	Item A4	Operational amplifiers applications	From 1 to 7 of	From 1 to 4 of
11	1 tut.		(linear applications)	(T-Methods)	(A-methods)
12	2 the.	Item A4	Operational amplifiers applications	From 1 to 7 of	From 1 to 4 of
12	1 tut.	Item A4	(non-linear applications)	(T-Methods)	(A-methods)
13	2 the.	Item A5	Negative feedback	From 1 to 7 of	From 1 to 4 of
15	1 tut.	Item A3	Regative recuback	(T-Methods)	(A-methods)
14	2 the.	Item A6	Basic principles of oscillators	From 1 to 7 of	From 1 to 4 of
14	1 tut.	Itelli Ao	basic principles of oscillators	(T-Methods)	(A-methods)
15	2 the.	Item A6	Different types of oscillators	From 1 to 7 of	From 1 to 4 of
15	1 tut.	Itelli Au	Different types of oscillators	(T-Methods)	(A-methods)
16	2 the.	Item A7	Timing circuits 555 timer	From 1 to 7 of	From 1 to 4 of
10	1 tut.	Itelli A/	applications, 555 timer as a mono	(T-Methods)	(A-methods)
	1 ເuι.		stable multivibrator	(1-Methods)	(A-memous)
17	2 the.	Item A7	555 timer as an astable multivibrator	From 1 to 7 of	From 1 to 4 of
1/	1 tut.	Item A7	and a bistable multivibrator	(T-Methods)	(A-methods)
18	2 the.	Item A8	Logic Families (RTL, DTL)	From 1 to 7 of	From 1 to 4 of
10	1 tut.	Item Ao	Logic Families (RTE, DTE)	(T-Methods)	(A-methods)
19	2 the.	Item A8	TTL	From 1 to 7 of	From 1 to 4 of
17	1 tut.			(T-Methods)	(A-methods)
20	2 the.	Item A8	ECL	From 1 to 7 of	From 1 to 4 of
20	1 tut.			(T-Methods)	(A-methods)
21	2 the.	Item A8	CMOS		From 1 to 4 of
-1	1 tut.			(T-Methods)	(A-methods)
22	2 the.	Item A9	DAC	From 1 to 7 of	From 1 to 4 of
	1 tut.			(T-Methods)	(A-methods)
23	2 the.	Item A9	DAC	From 1 to 7 of	From 1 to 4 of
	1 tut.		2110	(T-Methods)	(A-methods)
24	2 the.	Item A9	ADC	From 1 to 7 of	From 1 to 4 of
	1 tut.			(T-Methods)	(A-methods)
25	2 the.	Item A9	ADC	From 1 to 7 of	From 1 to 4 of
	1 tut.			(T-Methods)	(A-methods)
26	2 the.	Item A10	ROM	From 1 to 7 of	From 1 to 4 of
20	1 tut.	nem mo	NOM	(T-Methods)	(A-methods)
	1 เนเ.			(1-wiedlous)	(A-memous)
27	2 the.	Item A10	EPROM	From 1 to 7 of	From 1 to 4 of
	1 tut.			(T-Methods)	(A-methods)
28	2 the.	Item A10	E2PROM	From 1 to 7 of	From 1 to 4 of
	1 tut.	-		(T-Methods)	(A-methods)
29	2 the.	Item A10	Static RAM	From 1 to 7 of	From 1 to 4 of
	1 tut.			(T-Methods)	(A-methods)
30	2 the.	Item A10	Dynamic RAM	From 1 to 7 of	From 1 to 4 of
50	1 tut.			(T-Methods)	(A-methods
	i tut.				(A-memous

11. Infrastructure	11. Infrastructure						
1. Books Required reading:	 1-"Electronic Devices and Circuit Theory", Robert Boylestad, Louis Nashelsky, 9th Edition , 2006. Papers 2-Pa McAndrew, Colin C., Alexandra Lorenzo- Cassagnes, and Olin L. Hartin. "Transistor self- heating correction and thermal conductance extraction using only DC data." Microelectronic Test Structures (ICMTS), 2016 International 						
2. Main references (sources)	 3-Socratous, Josephine, et al. "Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications." Advanced functional materials 25.12 (2015): 1873-1885. 						
A- Recommended books and references (scientific journals, reports).	Laboratory experiments in the (Electronics & Communications Lab) of the department.						
B-Electronic references, Internet sites 12. The development of the cu	rriculum plan						

Continuous improvement of curriculum and faculty members through training

TEMPLATE FOR COURSE SPECIFICATION Microprocessor and Microcomputer I

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering				
	University of Baghdad				
2. University Department/Centre	Computer Engineering Department (COED)				
3. Course title/code& Description	Microprocessor & Microcomputer I / COE 204				
4. Modes of Attendance offered	Annual System: There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.				
5. Semester/Year	1st & 2nd / Academic Year 2022-2023				
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week Theory .60 hrs. / 2 hrs. per week Lab.				
7. Date of production/revision of this specification	October 2022				
8. Aims of the Course					
1- What are the knowledge and skills expected to be attained by the student upon					

completion of the course (brief description)?

- 2- Knowledge of the software architecture of the 8088/8086 and how to write and run programs using assembly language.
- 3- Checking architecture of 80x86 microprocessor
- 4- Studying types of memories and communication principles between memory and the microprocessor.
- 5- Studying of peripheral devices and communication principles between peripheral devices and the microprocessor.
- 6- Studying Interrupts Interface.
- 7- Studying DMA Interface.

 $9\cdot$ Learning Outcomes, Teaching , Learning and Assessment Method

A- Cognitive goals:

A1- Describe the software architecture of the 8088/8086 microprocessor.

A2- Know about the microprocessor's registers which includes general purpose registers, special purpose registers, and segment registers.

A3- Explain how a byte or a word of data is stored at a memory address space and the meaning of aligned and misaligned word.

A4- Describe the meaning of a logical address, a physical address and how to use the segment register and the instruction pointer to generate the physical memory address.

A5- Describe the meaning of addressing modes which include the register operand addressing mode, the immediate operand addressing mode and the memory operand addressing mode.

A6- Write a program in an assembly language using the 8086-emulator software (compiling, debugging, and running the program).

A7- Convert a program that is written in assembly language to machine codes.

A8- Use the instruction set of the 8088/8086 microprocessor that includes data transfer instructions, Arithmetic instructions, Logic instructions and Shift/Rotate instructions in writing a program.

A9- Change the state of the flag status bits by using the flag instructions.

A10- Describe the concept of a stack, when to use the stack and how a value inputs to the stack and return from it using the push and pop instruction.

A11- Write a procedure (function), call a procedure, and return to the main program.

A12- Describe the meaning of a string and how to handle the string using the string instructions.

A13- Write a macro (opcode) and describe the difference between a macro and a procedure.

A14- Describe the hardware architecture of the 8088/8086 microprocessor (pin layout).

A15- Explain how to configure the 8088/8086 microprocessor to work in minimum mode or maximum mode.

A16- Explain the bus system and identify the types of the bus system which includes the address bus , the data bus ,the control bus and how they work .

B. The skills goals special to the course

B1- Explain all the control signals that are needed in implementing the minimum mode interface between the 8088/8086 microprocessor and memory or input/output devices.

B2- Explain all the control signals that are needed in implementing the maximum mode interface between the 8088/8086 microprocessor and memory or input/output devices.

B3- Explain the 8284-clock generator and how it generates the system clock to the 8088/8086 microprocessor.

B4- Define the bus cycle and explain the meaning of memory read, memory write bus cycle and input/output read, input /output write bus cycle.

B5- Draw the read bus cycle and the write bus cycle for memory and input/output devices in both modes.

B6- Define the meaning of the wait state, the idle state and when or where the processor inserts it in the bus cycle system.

B7- Explain the interface between the 8088/8086 microprocessor and the 8288bus controller to generate the control signals in maximum mode .

B8- Describe the hardware organization of the memory address space and explain the difference between the 8086/8088 microprocessor from this point.

B9- Describe the devices that are needed in implementing the memory interface with the 8088/8086 microprocessor.

B10- Explain why the needs for memory address decoding circuit.

B11- Define the memory types and how they interface with the 8088/8086 microprocessor.

B12- Define the input /output types and how they interface with the 8088/8086 microprocessor.

B13- Use the input/output instructions in transferring data between the microprocessor and the input/output devices.

B14- Explain the interrupt types and how to use the interrupt instruction in software program.

B15- Explain how to interface multiple interrupts using 74f148 encoder.

B16- Understand the concept of direct memory address (DMA) and how the DMA controller works and interfaces with microcomputer system.

Teaching and Learning Methods.

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions.
- 6. Connection between Theory and Application.
- 7. Seminars.
- 8. In- and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment Methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.
- 4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor)

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

1-Tests, quizzes.

- 2- Activities.
- 3- Participate during lectures

Assessment methods

- 1- Study the conditions of former graduates.
- 2- Relevant committees in management such as scientific, QA.
- 3- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D-<u>General and rehabilitative transferred skills(other skills relevant to</u> <u>employability and personal development)</u>

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts

D4. Self-discipline and self-motivation

Topic title Assessment week Hours ILOs Teaching method Method 1 2 the. Item 1 Introduction to From 1 to From 1 to 4 microprocessors& 8 of of section 2 exp. of section 11 section microcomputers. 12 10 2 2 the. Item 2 From 1 to From 1 to 4 **16-bit Microprocessor** 8 of of **Software Architecture** of section 2 exp. section (8088/8086 µp): BIU &EU. section 11 12 10 From 1 to 4 3 2 the. Item 3,4 From 1 to **16-bit Microprocessor Software Architecture** 8 of of section 2 exp. of (8088/8086 µp): memory section 11 12 section organization, physical address 10 generation & IO organization. 2 the. Item 5.6 **Introduction to Assembly** From 1 to From 1 to 4 4 8 of of Language Programming& of section 2 exp. section 11 12

10.Course Structure

		section 10	Addressing Modes I of the 8088/ 8086.		
5	2 the. 2 exp.	Item 5,6 of section 10	Introduction to Assembly Language Programming& Addressing Modes II of the 8088/ 8086.	From 1 to 8 of section 11	From 1 to 4 of section 12
6	2 the. 2 exp.	Item A3	Converting Assembly Language Instructions to Machine Code.	From 1 to 8 of T- methods	From 1 to 4 of A-methods
7	2 the. 2 exp.	Item A3	Data Transfer instructions [MOV, XCHG, LDS, LES, LEA].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
8	2 the. 2 exp.	Item A3	Arithmetic Instructions: Addition-[ADD, ADC, INC, AAA, DAA] Subtraction-[SUB, SBB, DEC, NEG, AAS, DAS].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
9	2 the. 2 exp.	Item A3	Arithmetic Instructions: Multiplication- [MUL, IMUL, AAM] Division-[DIV, IDIV, AAD, CBW, CWD].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
10	2 the. 2 exp.	Item A3	Logic Instructions [AND, OR XOR, NOT, TEST]. Compare Inst. [CMP].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
11	2 the. 2 exp.	Item A3	Shift & Rotate Instructions [SHL, SAL, SHR, SAR, ROL, RCL, ROR, RCR].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
12	2 the. 2 exp.	Item A3	Flag Control Instructions [LAHF, SAHF, CLC, STC, CMC, CLI, STI, CLD, STD].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
13	2 the. 2 exp.	Item A3	Control Transfer Insts. Unconditional jump [JMP]. Conditional Jump Insts.	From 1 to 8 of T- methods	From 1 to 4 of A-methods
14	2 the. 2 exp.	Item A3	LOOP&LOOP-Handling Instructions[LOOP, LOOPE/LOOPZ, LOOPNE/LOOPNZ].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
15	2 the. 2 exp.	Item A2, A3	The Stack & Subroutines [PUSH, PUSHF, POP, POPF, CALL, RET].	From 1 to 8 of	From 1 to 4 of A-methods

				T-	
				methods	
16	2 the. 2 exp.	Item A3	String and String-Handling Instructions:	From 1 to 8 of T- methods	From 1 to 4 of A-methods
17	2 the. 2 exp.	Item A6	The 8088 and 8086 µps: [Pin layout, Minimum & Max- Mode Interfaces].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
18	2 the. 2 exp.	Item A7	System Clock, Bus Cycle & Time States.8088/8086 Fully Buffered.	From 1 to 8 of T- methods	From 1 to 4 of A-methods
19	2 the. 2 exp.	Item A8	The Memory System: [Memory bus-cycles read/ write, memory interfacing to 8088/8086 (I)].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
20	2 the. 2 exp.	Item A8	The Memory System:[Memory types, memory chip requirements].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
21	2 the. 2 exp.	Item Item A8	The Memory System:[Memory interfacing to 8088/8086 (II)].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
22	2 the. 2 exp.	Item A9	Input /Output Interface Circuits and Peripheral Devices [Isolated& Memory- mapped I/O, Input/Output Bus cycles].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
23	2 the. 2 exp.	Item A9	Input /Output Interface Circuits and Peripheral Devices-[LED, Switches, 7- segment].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
24	2 the. 2 exp.	Item A9	Input /Output Interface Circuits and Peripheral Devices- [Keyboard & Parallel Printer Interface].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
25	2 the. 2 exp.	Item A5	Introduction to 8279 Keyboard &Display controller and its interface to 8088/8086.	From 1 to 8 of T- methods	From 1 to 4 of A-methods
26	2 the. 2 exp.	Item A5	Interrupt-[interrupt types: hardware, software, internal; vector table].	From 1 to 8 of T- methods	From 1 to 4 of A-methods

27	2 the. 2 exp.	Item A5	Interrupt-[external hardware interrupt interface using INTR &NMI].	From 1 to 8 of T- methods	From 1 to 4 of A-methods
28	2 the. 2 exp.	Item A5	Interrupt-[Multiple Interrupt Interface using 74F148 encoder].	From 1 to 12 of T- methods	From 1 to 4 of A-methods
29	2 the. 2 exp.	Item A10	Introduction to Direct Memory Accessing DMA & 8237 DMA controller I.	From 1 to 12 of T- methods	From 1 to 4 of A-methods
30	2 the. 2 exp.	Item A10	Introduction to DMA & 8237 DMA controller II.	From 1 to 12 of T- methods	From 1 to 4 of A-methods

11. Infrastructure	
1. Books Required reading:	The 8088 and 8086 Microprocessors:
	Programming Interfacing, Software, Hardware,
	and Applications by Walter A. Triebel, Avtar
	Singh
2. Main references (sources)	Introduction to 80x86 Assembly Language and
	Computer Architecture by <u>Richard Detmer</u> .
	Paper
A- Recommended books and	6-N. Firasta et al., " Intel ® AVX: New frontiers
references (scientific journals,	in performance improvements and energy
reports).	efficiency ", Intel Corporation Tech. Rep., May
	2000
B-Electronic references, Internet	
sites	

12. The development of the curriculum plan

Continuous improvement of curriculum and faculty members through training programs.

TEMPLATE FOR COURSE SPECIFICATION Digital System Design

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering
	University of Baghdad
2. University Department/Centre	Department of Computer Engineering
3. Course title/code& Description	Digital System Design / COE 205
4. Modes of Attendance offered	Annual System: There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1st & 2nd / Academic Year 2023-2022
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week Theory60 hrs. / 2 hrs. per week Lab.
7. Date of production/revision of this specification	October/2022
8. Aims of the Course	

Briefly, Goals and objectives of the completed course are:

1- How to relate the skills and concepts learned from fundamental digital design to understand advance digital design.

- 2- How to use the learned skills to understand, derive, and solve the digital & logical equations of digital circuit, and system in various objects (e.g., microprocessor I & II, computer architecture I & II, digital electronics, digital communication, I/O devices etc.).
- 3- Representation, the fundamental concepts to advanced Digital design and implementation by understanding practical digital devices.

9. Learning Outcomes, Teaching , Learning and Assessment Method

A- Cognitive goals:

A1- Simplify & solved any Boolean equation until to 6 variables using K-map method.

A2- Acknowledge how to design digital problem using state machine approach.

A3- Use registers & registers application in a digital system.

A4- Analysis any sequential circuit of a digital system using state machine design.

A5- Design practical & complex problem using algorithm state machine (ASM) chart approach.

A6- Realize digital system using programmable devices (PLA, ROM, ..., etc.)

A7- Separate between synchronous & asynchronous state machine approach in a design.

A8- Design a digital circuit & solve practical problems by applying VHDL language in a design

B- The skills goals special to the course

B1- Simplify & solved any Boolean equation until to 6 variables using K-map method.

B2- Acknowledge how to design digital problem using state machine approach.

B3- Use registers & registers application in a digital system.

B4- Analysis any sequential circuit of a digital system using state machine design.

B5- Design practical & complex problem using algorithm state machine (ASM) chart approach.

B6- Realize digital system using programmable devices (PLA, ROM, ..., etc.)

B7- Separate between synchronous & asynchronous state machine approach in a design.

B8- Design a digital circuit & solve practical problems by applying VHDL language in a design

Assessment Methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

1-Tests, quizzes.

2- Activities.

3- Participate during lectures

Assessment methods

- 1- Study the conditions of former graduates.
- 2- Relevant committees in management such as scientific, QA.
- 3- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D-<u>General and rehabilitative transferred skills(other skills relevant to</u> <u>employability and personal development)</u>

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts

D4. Self-discipline and self-motivation

Week	Hours	ILOs	Topic title	Teaching	Assessment
1	2 the. 2 exp.	Item 1 of section 10	Sequence generator & detector, PN generator	method From 1 to12 of section 11	Method From 1 to 4 of section 12
2	2 the. 2 exp.	Item 2 & 4 of section 10	Introduction of Synchronous sequential logic	From 1 to12 of section 11	From 1 to 4 of section 12
3	2 the. 2 exp.	Item 5 of section 10	State diagram	From 1 to12 of section 11	From 1 to 4 of section 12
4	2 the. 2 exp.	Item 1 to 4 of section 10	Tutorials & Quiz	From 1 to12 of section 11	From 1 to 4 of section 12
5	2 the. 2 exp.	Item 5 of section 10	State diagram and state diagram reduction	From 1 to12 of section 11	From 1 to 4 of section 12
6	2 the. 2 exp.	From 1 to 4 of section 10	Feedback shift registers, sequential circuits using a register and a combination circuit	From 1 to12 of section 11	From 1 to 4 of section 12
7	2 the. 2 exp.	Item 4 of section 10	Analysis of Synchronous sequential logic	From 1 to12 of section 11	From 1 to 4 of section 12
8	2 the. 2 exp.	Item 8 of section 10	Introduce basic VHDL concepts and constructs, Signal and constant	From 1 to12 of section 11	From 1 to 4 of section 12
9	2 the. 2 exp.	Item 8 of section 10	VHDL description of combinational circuits, VHDL models& operators	From 1 to12 of section 11	From 1 to 4 of section 12
10	2 the. 2 exp.	Item 8 of section 10	Packages and libraries, IEEE standard logic & Modeling Flip-Flops using VHDL processes	From 1 to12 of section 11	From 1 to 4 of section 12
11	2 the. 2 exp.	Item 8 of section 10	Modeling registers and counters using VHDL processes & Quiz	From 1 to12 of section 11	From 1 to 4 of section 12
12	2 the. 2 exp.	Item 8 of section 10	Modeling combinational logic using VHDL processes	From 1 to12 of section 11	From 1 to 4 of section 12
13	2 the. 2 exp.	Item 8 of section 10	VHDL Modeling of a sequential machine, More about processes and sequential statements	From 1 to12 of section 11	From 1 to 4 of section 12

14	2 the. 2 exp.	Item 7 of section 10	Introduction of Asynchronous sequential logic	From 1 to12 of section 11	From 1 to 4 of section 12
15	2 the. 2 exp.	Item 7 of section 10	Non- critical race, stability consideration, Hazard (Static, Dynamic & Essential)	From 1 to12 of section 11	From 1 to 4 of section 12
16	2 the. 2 exp.	Item 7 of section 10	Determination of flow table for problem reduction of the primitive flow table	From 1 to12 of section 11	From 1 to 4 of section 12
17	2 the. 2 exp.	From 1 to 8 of section 10	Tutorial & Quiz	From 1 to12 of section 11	From 1 to 4 of section 12
18	2 the. 2 exp.	Item 7 of section 10	Conversion of primitive flow table to transition table and logic diagram	From 1 to12 of section 11	From 1 to 4 of section 12
19	2 the. 2 exp.	Item 7 of section 10	State assignment, merging rows of the flow table, race free assignment, hazard,	From 1 to12 of section 11	From 1 to 4 of section 12
20	2 the. 2 exp.	Item 7 of section 10	implementation of sequential circuit with SR latches, Quiz	From 1 to12 of section 11	From 1 to 4 of section 12
21	2 the. 2 exp.	Item 6 of section 10	Logic circuits and programmable logic devices, PLA, PAL, ROM, FPGA	From 1 to12 of section 11	From 1 to 4 of section 12
22	2 the. 2 exp.	Item 5 of section 10	Introduction of Algorithmic state machines (ASM), ASM Chart & Table	From 1 to12 of section 11	From 1 to 4 of section 12
23	2 the. 2 exp.	Item 5 of section 10	Practical problems using ASM chart	From 1 to12 of section 11	From 1 to 4 of section 12
24	2 the. 2 exp.	Item 5 of section 10	Practical problems using ASM chart	From 1 to12 of section 11	From 1 to 4 of section 12
25	2 the. 2 exp.	From 5 to 6 of section 10	Realization ASM Chart using PLA & ROM devices	From 1 to12 of section 11	From 1 to 4 of section 12
26	2 the. 2 exp.	Item 8 of section 10	Design of simple processor in VHDL	From 1 to12 of section 11	From 1 to 4 of section 12
27	2 the. 2 exp.	Item 8 of section 10	Design of simple processor in VHDL	From 1 to12 of section 11	From 1 to 4 of section 12
28	2 the. 2 exp.	Item 8 of section 10	Design of simple processor in VHDL	From 1 to12 of section 11	From 1 to 4 of section 12

29 30	2 the. 2 exp. 2 the.	Item 8 of section 10 From 1	Design of VHDL Tutorial &	simple processor in	From 1 to12 of section 11 From 1	From 1 to 4 of section 12 From 1 to 4
	2 exp.	to 8 of section 10		• Quiz	to12 of section 11	of section 12
11. Infra	structure					
		"Fundamentals of Logic Design", Charles H. Roth & Larry L. Kinney, all edition until 6th edition in 2010-2014.				
		"Fundamentals of Logic Design", Charles H. Roth & Larry L. Kinney, all edition until 6th edition in 2010-2014.				
A- Reco	mmendeo	d books and	references	Deshmane, P. D., Lad, M., Mhetre, P., & Kumar,		
(scientifi	(scientific journals, reports).			S. (2014). 8 Bit Microp International Journal of		-
B-Electr	B-Electronic references, Internet sites					
12. Th	12. The development of the curriculum plan					

Continuous improvement of curriculum and faculty members through training

TEMPLATE FOR COURSE SPECIFICATION Data Structures and Computer Algorithms

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering
	University of Baghdad
2. University Department/Centre	Department of Computer Engineering
3. Course title/code& Description	Data structures and Computer Algorithms/ COE206
4. Modes of Attendance offered	Annual System: There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1st & 2nd / Academic Year 2023-2022
6. Number of hours tuition (total)	60 hrs. / 2 hrs. per week theory60 hrs. / 2 hrs. per week Lab.
7. Date of production/revision of this specification	October -2022

8. Aims of the Course

- 1- In this course we have tried to emphasize the following notions to our students:
- 2- Learning how to write programs in Object Oriented Programming (OOP) style using JAVA.

- 3- The ability to define at a sufficiently high level of abstraction to data structures and algorithms that are needed.
- 4- The ability to devise alternative implementations of data structure.
- 5- The ability to write a correct algorithm and for all programs tried our best to structure them appropriately.
- 6- To be able to describe the accessing functions of all the fundamentals of data structures (linear list, linked list, stack, queue, tree, binary search tree, table, and the hash techniques) and its operations with the help of object-oriented design.

9. Learning Outcomes, Teaching , Learning and Assessment Method

A- Cognitive goals:

A1- Upon Completion of this course the students will acquire the following skills:

A2- Writing programs in OOP style after knowing through the course the advantages of OOP in writing any software.

A3- Using the Object-Oriented Design (OOD) in his/her projects. A4- Design and implement the solution to a problem with the use of an appropriate data structures.

B. The skills goals special to the course

B1- Upon Completion of this course the students will acquire the following skills:

B2- Writing programs in OOP style after knowing through the course the advantages of OOP in writing any software.

B3- Using the Object-Oriented Design (OOD) in his/her projects.

B4- Design and implement the solution to a problem with the use of an appropriate data structures.

Teaching and Learning Methods.

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions.
- 6. Connection between Theory and Application.

- 7. Seminars.
- 8. In- and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

1-Tests, quizzes.

2- Activities.

3- Participate during lectures

Assessment methods

- 1- Study the conditions of former graduates.
- 2- Relevant committees in management such as scientific, QA.
- 3- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D-<u>General and rehabilitative transferred skills(other skills relevant to</u> <u>employability and personal development)</u>

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts

D4. Self-discipline and self-motivation

10.Course Structure

week	Hours	ILOs	Topic title	Teaching method	Assessment Method
1	2 the. 2 exp.	From 1 to 2 of section 10	Basics of OOP	From 1 to12 of section 11	From 1 to 4 of section 12
2	2 the. 2 exp.	From 1 to 2 of section 10	Types of member functions	From 1 to12 of section 11	From 1 to 4 of section 12
3	2 the. 2 exp.	From 1 to 2 of section 10	Initializing functions/data broker functions	From 1 to12 of section 11	From 1 to 4 of section 12
4	2 the. 2 exp.	From 1 to 2 of section 10	Implementation functions/access functions/ auxiliary functions and constant functions	From 1 to12 of section 11	From 1 to 4 of section 12
5	2 the. 2 exp.	From 1 to 2 of section 10	Class instantiation	From 1 to12 of section 11	From 1 to 4 of section 12
6	2 the. 2 exp.	From 1 to 2 of section 10	Array of class objects/ objects as function arguments	From 1 to12 of section 11	From 1 to 4 of section 12
7	2 the. 2 exp.	From 1 to 2 of section 10	Constructors(initializing object/default constructor)	From 1 to12 of section 11	From 1 to 4 of section 12
8	2 the. 2 exp.	From 1 to 2 of section 10	Copy constructor/ using custom constructor	From 1 to12 of section 11	From 1 to 4 of section 12
9	2 the. 2 exp.	From 1 to 2 of section 10	Destructors	From 1 to12 of section 11	From 1 to 4 of section 12
10	2 the. 2 exp.	From 1 to 2 of section 10	Class types, class scope, empty class, nested class	From 1 to12 of section 11	From 1 to 4 of section 12
11	2 the. 2 exp.	From 1 to 2 of section 10	Data members, static members	From 1 to12 of section 11	From 1 to 4 of section 12
12	2 the. 2 exp.	From 1 to 2 of section 10	Overloading (non- member/ member functions) conversion function and friend functions	From 1 to12 of section 11	From 1 to 4 of section 12
13	2 the. 2 exp.	From 1 to 2 of section 10	Overloaded constructor, overloaded operator, and operator as a function call	From 1 to12 of section 11	From 1 to 4 of section 12

14	2 the. 2 exp.	From 1 to 2 of section 10	Templates	From 1 to12 of section 11	From 1 to 4 of section
					12
15	2 the. 2 exp.	From 1 to 2 of section 10	The "this" pointer	From 1 to12 of section 11	From 1 to 4 of section 12
16	2 the. 2 exp.	From 1 to 2 of section 10	Simple arrays	From 1 to12 of section 11	From 1 to 4 of section 12
17	2 the. 2 exp.	From 1 to 2 of section 10	Multidimensional arrays	From 1 to12 of section 11	From 1 to 4 of section 12
18	2 the. 2 exp.	From 1 to 2 of section 10	Lists	From 1 to12 of section 11	From 1 to 4 of section 12
19	2 the. 2 exp.	From 1 to 2 of section 10	implantation via arrays, dynamic memory, and via linked	From 1 to12 of section 11	From 1 to 4 of section 12
20	2 the. 2 exp.	From 1 to 2 of section 10	Order list	From 1 to12 of section 11	From 1 to 4 of section 12
21	2 the. 2 exp.	From 1 to 2 of section 10	Stacks, stack implementations	From 1 to12 of section 11	From 1 to 4 of section 12
22	2 the. 2 exp.	From 1 to 2 of section 10	Queues, Queue implementations	From 1 to12 of section 11	From 1 to 4 of section 12
23	2 the. 2 exp.	From 1 to 2 of section 10	Circular queue	From 1 to12 of section 11	From 1 to 4 of section 12
24	2 the. 2 exp.	From 1 to 2 of section 10	Tables	From 1 to12 of section 11	From 1 to 4 of section 12
25	2 the. 2 exp.	From 1 to 2 of section 10	Hash technique	From 1 to12 of section 11	From 1 to 4 of section 12
26	2 the. 2 exp.	From 1 to 2 of section 10	Methods for handling collisions	From 1 to12 of section 11	From 1 to 4 of section 12
27	2 the. 2 exp.	From 1 to 2 of section 10	Trees	From 1 to12 of section 11	From 1 to 4 of section 12
28	2 the. 2 exp.	From 1 to 2 of section 10	building binary tree	From 1 to12 of section 11	From 1 to 4 of section 12
29	2 the. 2 exp.	From 1 to 2 of section 10	Tree traversal/ preorder, in order, and post order	From 1 to12 of section 11	From 1 to 4 of section 12

30	2 the. 2 exp.	From 1 to 2 of section 10	Binary	search tree	From 1 to12 of section 11	From 1 to 4 of section 12
11. In	frastructu	ure			·	
			Data Structures and Algorithms in Java [™] Michael T. Goodrich, Roberto Tamassia Michael H. Goldwasser, 2014 John Wiley & Sons, Inc.			
			Laboratory experin of the department. Available websites	1		
A- Recommended books and references (scientific journals, reports).			Extra lectures by f			
B-Ele sites		eferences, Inter	net			

12. The development of the curriculum plan
Continuous improvement of curriculum and faculty members through training

TEMPLATE FOR COURSE SPECIFICATION Communications

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering			
	University of Baghdad			
2. University Department/Centre	Department of Computer Engineering			
3. Course title/code& Description	Communications / COE 207			
4. Modes of Attendance offered	Annual System: There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.			
5. Semester/Year	1st & 2nd / Academic Year 2022-2023			
6. Number of hours tuition (total)	 150 hrs. / 4 hrs. per week . 90 hrs./ 3 hrs. per week Theory. 60 hrs./ 2 hrs. per week Lab. 			
7. Date of production/revision of this specification	October -2022			
8. Aims of the Course				
1- What are the knowledge and skills expected to be attained by the student upon completion of the course (brief description)?				

2- To understand the following:-

- 3- Analog modulation and demodulation such as (AM, DSB-SC, SSB, FM, PM)
- 4- Digital Modulation and Demodulation such as (PCM, DM, ADM, ASK, FSK, PSK, DPSK)
- 5- Information theory (Measure of information entropy and channel capacity, Source Coding, Channel coding)

 $9\cdot$ Learning Outcomes, Teaching , Learning and Assessment Method

A- Cognitive goals:

A1- What are the knowledge and skills expected to be attained by the student upon completion of the course(should be measurable)?

A2- The student will be able to:

A3- Analyze a complete analog and digital communication system.

A4- Measure of information entropy and channel capacity.

A5- The ability to coding any message, by using Source Coding procedure.

A6- The ability to find the error detection and correction for digital channels.

B. The skills goals special to the course

B1- What are the knowledge and skills expected to be attained by the student upon completion of the course(should be measurable)?

B2- The student will be able to:

B3- Analyze a complete analog and digital communication system.

B4- Measure of information entropy and channel capacity.

B5- The ability to coding any message, by using Source Coding procedure.

B6- The ability to find the error detection and correction for digital channels.

Teaching and Learning Methods.

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions.
- 6. Connection between Theory and Application.
- 7. Seminars.

8. In- and Out-Class oral conservations.

Reports, Presentations, and Posters.

Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

- 1-Tests, quizzes.
- 2- Activities.
- 3- Participate during lectures

Assessment methods

- 1- Study the conditions of former graduates.
- 2- Relevant committees in management such as scientific, QA.
- 3- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D- General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts

D4. Self-discipline and self-motivation

10. Course Structure

week	Hours	ILOs	Topic title	Teaching method	Assessment Method
1	2 the. 2 lab.	Item 1 of section 10	Definitions, Elements of communication system, types of communication system	From 1 to12 of section 11	From 1 to4 of section 12
2	2 the. 2 lab.	Item 1 of section 10	Fourier series, Fourier transform	From 1 to12 of section 11	From 1 to4 of section 12
3	2 the. 2 lab.	Item 1 of section 10	Normalized power, Normalized energy, Convolution	From 1 to12 of section 11	From 1 to4 of section 12
4	2 the. 2 lab.	Item 1 of section 10	Unit impulse, Frequency response, Bandwidth of the system and signal	From 1 to12 of section 11	From 1 to4 of section 12
5	2 the. 2 lab.	Item 1 of section 10	Analog signal transmission, Modulation, Types of modulation, Reasons for modulation	From 1 to12 of section 11	From 1 to4 of section 12
6	2 the. 2 lab.	Item 1 of section 10	Amplitude modulation (AM), Normal AM (DSB- LC), Carrier and sideband power in AM	From 1 to12 of section 11	From 1 to4 of section 12
7	2 the. 2 lab.	Item 1 of section 10	Generation of AM signal, Modulator using multiplier, Modulator using non-linearity, Switching modulation, Detection of AM signal	From 1 to12 of section 11	From 1 to4 of section 12
8	2 the. 2 lab.	Item 1 of section 10	DSB-SC modulation, Generation of DSB-SC signal, Balanced modulator, Ring modulator, Detection of DSB-SC signal (product detector)	From 1 to12 of section 11	From 1 to4 of section 12
9	2 the. 2 lab.	Item 1 of section 10	SSB modulation, Generation of SSB signal, Detection of SSB signal, VSB modulation, Superheterodyne AM receiver	From 1 to12 of section 11	From 1 to4 of section 12

10	2 the. 2 lab.	Item 1 of section 10	Angle modulation , Narrowband FM, generation of NBFM signal	From 1 to12 of section 11	From 1 to4 of section 12
11	2 the. 2 lab.	Item 1 of section 10	Wideband FM, Power, and bandwidth of FM signal	From 1 to12 of section 11	From 1 to4 of section 12
12	2 the. 2 lab.	Item 1 of section 10	Generation of FM signal, Direct method, Indirect method	From 1 to12 of section 11	From 1 to4 of section 12
13	2 the. 2 lab.	Item 1 of section 10	FM detection, Frequency discriminator, Zero crossing detector	From 1 to12 of section 11	From 1 to4 of section 12
14	2 the. 2 lab.	Item 1 of section 10	Superheterodyne FM receiver,	From 1 to12 of section 11	From 1 to4 of section 12
15	2 the. 2 lab.	Item 1 of section 10	Frequency division multiplexing (FDM)	From 1 to12 of section 11	From 1 to4 of section 12
16	2 the. 2 lab.	Item 1 of section 10	Noise in AM system, Noise in DSB-SC system	From 1 to12 of section 11	From 1 to4 of section 12
17	2 the. 2 lab.	Item 1 of section 10	Noise in FM system	From 1 to12 of section 11	From 1 to4 of section 12
18	2 the. 2 lab.	Item 1 of section 10	Digital communication, Sampling theory	From 1 to12 of section 11	From 1 to4 of section 12
19	2 the. 2 lab.	Item 1 of section 10	Pulse code modulation (PCM)	From 1 to12 of section 11	From 1 to4 of section 12
20	2 the. 2 lab.	Item 1 of section 10	Bandwidth and signal rate for PCM	From 1 to12 of section 11	From 1 to4 of section 12
21	2 the. 2 lab.	Item 1 of section 10	Noise in PCM system	From 1 to12 of section 11	From 1 to4 of section 12

22	2 the. 2 lab.	Item 1 of section 10	ASK, FSK, PSK, Generation and detection of ASK signal	From 1 to12 of section 11	From 1 to4 of section 12
23	2 the. 2 lab.	Item 1 of section 10	Generation and detection of PSK signal	From 1 to12 of section 11	From 1 to4 of section 12
24	2 the. 2 lab.	Item 1 of section 10	Differential PSK, Generation of FSK signal	From 1 to12 of section 11	From 1 to4 of section 12
25	2 the. 2 lab.	Item 1 of section 10	Detection of FSK signal (Using BPF, Using multiplier), Comparison of binary digital modulation systems	From 1 to12 of section 11	From 1 to4 of section 12
26	2 the. 2 lab.	Item 1 of section 10	TDM, TDM-telephony system	From 1 to12 of section 11	From 1 to4 of section 12
27	2 the. 2 lab.	Item 2 of section 10	Measure of information	From 1 to12 of section 11	From 1 to4 of section 12
28	2 the. 2 lab.	Item 2 of section 10	Memoryless channel, channel capacity	From 1 to12 of section 11	From 1 to4 of section 12
29	2 the. 2 lab.	Item 3 of section 10	Source Coding	From 1 to12 of section 11	From 1 to4 of section 12
30	2 the. 2 lab.	Item 3 of section 10	Channel coding	From 1 to12 of section 11	From 1 to4 of section 12

11. Infrastructure	
1. Books Required reading:	 1- Principles of Communications, Systems, Modulation, and Noise. Rodger E. Ziemer / William H. Tranter. Fifth Edition. John Wiley, 2002.
2. Main references (sources)	 Introduction to Communications Systems. Ferrel G.Stremler. 3rd edition, Addison Wesley, 1990.
A- Recommended books and references (scientific journals, reports).	 Buchali, F., Böcherer, G., Idler, W., Schmalen, L., Schulte, P., & Steiner, F. (2015, September). Experimental demonstration of capacity increase and rate-adaptation by probabilistically shaped 64-QAM. In Optical Communication (ECOC), 2015 European Conference on (pp. 1-3). IEEE.
B-Electronic references, Internet sites	

12. The development of the curriculum plan

Continuous improvement of curriculum and faculty members through training programs.

Third Stage

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Computer Architecture I

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Computer Architecture I / COE301
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	Academic Year 2022 – 2023.
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week
7. Date of production/revision of this Specification	October- 2022
8. Aims of the Course	

The course provides the basic knowledge necessary to understand the hardware operation of digital computers and covers some of the subjects associated with computer hardware.

9. Learning Outcomes, Teaching, Learning and Assessment Method

A- Cognitive goals:

A1. Write RTL for hardware jobs.

A2. Define and explain the principles of computer architecture and the interfacing between its hardware and software components

A3. Understand the data path inside a processor

A4. Understand the micro programmed control organization

A5. Know the organization and architecture of the CPU with an emphasis on the user's view of the computer.

A6.Understand of parallel processing and pipeline.

A7.Understand of architectural blocks involved in computer arithmetic, both integer and floating point.

A8. Understand computer busses and input/output peripherals.

A9. Analyze computer memory hierarchy

A10. Understand multi-processor architectures.

В-

B. The skills goals special to the course

B1- Mathematical concepts and basic algorithms for describing and solving engineering problems.

B2 - Initial developments in Computer Architecture majors.

B3 - developing the ability to conduct experiments and analyze data.

B5- Identifying, formulating and solving Computer Architecture problems using modern engineering tools, techniques, and skills,

B6 - cooperation in group projects,

B7 - Developing written and verbal communication skills through presentations from the project results,

B8 - obtaining an appreciation for some of the ethical problems that exist in the practice of the profession.

Teaching and Learning Methods.

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions.
- 6. Connection between Theory and Application.
- 7. Seminars.
- 8. In- and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

- 1-Tests, quizzes.
- 2- Activities.
- 3- Participate during lectures

Assessment methods

- 1- Study the conditions of former graduates.
- 2- Relevant committees in management such as scientific, QA.
- 3- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D- General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts

D4. Self-discipline and self-motivation

10. Course Structure

weak	Hours	ILOs	Topic title	Teaching method	Assessment Method
1	3 the.	Item 1 of section 10	Register Transfer Language	From 1 to 9 of section 11	From 1 to 4 of section 12
2	3 the.	Item 1 of section 10	Arithmetic Micro operations	From 1 to 9 of section 11	From 1 to 4 of section 12
3	3 the.	Item 2 of section 10	Instruction Codes	From 1 to 9 of section 11	From 1 to 4 of section 12
4	3 the.	Item 2 of section 10	Timing and Control	From 1 to 9 of section 11	From 1 to 4 of section 12
5	3 the.	Item 2 of section 10	Memory-Reference Instructions	From 1 to 9 of section 11	From 1 to 4 of section 12
6	3 the.	Item 3 of section 10	Complete Computer Description	From 1 to 9 of section 11	From 1 to 4 of section 12
7	3 the.	Item 3 of section 10	Design of Accumulator Logic	From 1 to 9 of section 11	From 1 to 4 of section 12
8	3 the.	Item 3of section 10	The Assembler	From 1 to 9 of section 11	From 1 to 4 of section 12
9	3 the.	Item 3of section 10	Control Memory	From 1 to 9 of section 11	From 1 to 4 of section 12
10	3 the.	Item 4 of section 10	Micro program Example	From 1 to 9 of section 11	From 1 to 4 of section 12
11	3 the.	Item 4 section 10	Design of Control Unit	From 1 to 9 of section 11	From 1 to 4 of section 12
12	3 the.	Item 5 of section 10	Central Processing Unit	From 1 to 9 of section 11	From 1 to 4 of section 12
13	3 the.	Item 5 of section 10	Instruction Formats	From 1 to 9 of section 11	From 1 to 4 of section 12
14	3 the.	Item 5 of section 10	Addressing Modes	From 1 to 9 of section 11	From 1 to 4 of section 12
15	3 the.	Item 5 of section 10	Program Control	From 1 to 9 of section 11	From 1 to 4 of section 12
16	3 the.	Item 5 of section 10	Reduced Instruction Set Computer	From 1 to 9 of section 11	From 1 to 4 of section 12
17	3 the.	Item 6 of section 10	Parallel Processing	From 1 to 9 of section 11	From 1 to 4 of section 12
18	3 the.	Item 6 of section 10	Instruction Pipeline	From 1 to 9 of section 11	From 1 to 4 of section 12
19	3 the.	Item 6 of section 10	Vector Processing	From 1 to 9 of section 11	From 1 to 4 of section 12
20	3 the.	Item 7 of section 10	Computer Arithmetic	From 1 to 9 of section 11	From 1 to 4 of section 12
21	3 the.	Item 7 of section 10	Division Algorithms	From 1 to 9 of section 11	From 1 to 4 of section 12
22	3 the.	Item 7 of section 10	Decimal Arithmetic Unit	From 1 to 9 of section 11	From 1 to 4 of section 12
23	3 the.	Item 8 of section 10	Input-Output Organization	From 1 to 9 of section 11	From 1 to 4 of section 12
24	3 the.	Item 8 of section 10	Asynchronous Data Transfer	From 1 to 9 of section 11	From 1 to 4 of section 12

25	3 the.	Item 8 of section 10	Priority Interrupt	From 1 to 9 of section 11	From 1 to 4 of section 12
26	3 the.	Item 8 of section 10	Input-Output Processor	From 1 to 9 of section 11	From 1 to 4 of section 12
27	3 the.	Item 9 of section 10	Memory Organization	From 1 to 9 of section 11	From 1 to 4 of section 12
28	3 the.	Item 9 of section 10	Associative Memory	From 1 to 9 of section 11	From 1 to 4 of section 12
29	3 the.	Item 10 of section 10	Characteristics of Multiprocessors	From 1 to 9 of section 11	From 1 to 4 of section 12

11. Infrastructure	
1. Books Required reading:	 Books: M. Morris. Mano, "Computer System Architecture" 3rd Edition William Stalling, "Computer Organization and Architecture" 6th edition.
2. Main references (sources)	• Computer Architecture A Quantitative Approach, Sixth Edition, John L. Hennessy, David A. Patterson, 2019.
A- Recommended books and references (scientific journals, reports).	 P. Trivedi and R. P. Tripathi, "Design & analysis of 16 bit RISC processor using low power pipelining," International Conference on Computing, Communication & Automation, Noida, 2015, pp. 1294-1297. B. W. Bomar, "Implementation of microprogrammed control in FPGAs," in <i>IEEE Transactions on Industrial Electronics</i>, vol. 49, no. 2, pp. 415-422, Apr 2002.
B-Electronic references, Internet sites	 J. L. Cruz, A. Gonzalez, M. Valero and N. P. Topham, "Multiple-banked register file architectures," Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201), Vancouver, BC, Canada, 2000, pp. 316-325. C. Hamacher, Z. Vranesic, S. Zaky, N. Manjikian "Computer Organization and Embedded Systems", Sixth Edition

12. The development of the curriculum plan Continuous developing academic curricula in line with the scientific development

TEMPLATE FOR COURSE SPECIFICATION Digital Control Systems

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmer specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Digital Control Systems (COE 302)
	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects
5. Semester/Year	1st & 2nd semester / Academic Year 2022 – 2023.
6. Number of hours tuition (total)	3 hrs. per week in class 2 hrs. per week in lab
7. Date of production/revision of this Specification	October-2022

8. Aims of the Course

1- This subject has been prepared as a comprehensive for a first study of control engineering.

2- This subject also helps the students to design control systems for variety of engineering applications

3- This subject covers both conventional control theory and modern control theory in digital and continuous systems.

9. Learning Outcomes, Teaching , Learning and Assessment Method

A- Cognitive goals.

A1- Learn the basic components of a control system, the concept of feedback, closed loop control versus open-loop control. For continuous and digital systems

A2- Learn to find transfer functions for linear time-invariant electrical, mechanical and electromechanical systems

A3- Learn how to describe and quantify transients-response specifications of first and second-order systems

A4- Learn how to find the steady-state error for unity and non-unity-gain feedback A5- Learn how to determine the stability of a system

A6 - Learn how to use root-locus and frequency domain methods to design basic controllers

B- The skills goals special to the course.

B1. Recognize between open-loop and closed-loop control system in terms of their applications

B2. Find the response of closed loop system (Transient response and steady-state response)

B3. Sketch the root locus of different order systems

B4.How to check the stability of Control systems in time domain and frequency domain

B5.Compute the response of sampled data systems and Check the stability of Digital control system

Teaching and Learning Methods

- 1- Lectures
- 2- Tutorials
- 3- Homework and Assignments.
- 4- Lab. Experiments and Reports.
- 5- Tests and Exams.
- 6- In-Class Questions and Discussions.
- 7- Connection between Theory and Application.
- 8- Seminars.
- 9- In- and Out-Class oral conservations.

Assessment methods

1. Examinations, Tests, and Quizzes.

2. Presentations and student Engagement during Lectures.

3. Extracurricular Activities.

C. Affective and value goals

- C1. Designing
- C2. Analyzing
- C3. Ability to work within the team.
- C4. Problem solving, by applying the learning outcomes and subject -specific skills to solve practical design problems.

Teaching and Learning Methods

- 1- Assignment
- 2- Seminars
- 3- Group Discussion

Assessment methods

- 1. Quizzes
- 2. Test
- 3. Homework
- 4. Oral Discussion
- 5. Independent research.
- D. <u>General and Transferable Skills (other skills relevant to employability and personal development)</u>

D1. Ability to carry out Independent study to take notes, to carry out background reading.

- D2. Problem Solving based on understanding.
- D3. Ability to learn and remember key facts
- D4. Self-discipline and self-motivation.

10. Course Structure						
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method	
1-2	2 theory 1 tutorial 2 labs.	A1	Open loop system, closed loop system,	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method	
3-4	2 theory 1 tutorial 2 labs.	A2	Classification of feedback control system Mathematical models : Models of electrical systems, Mechanical, thermal and liquid system,	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method	
5	2 theory 1 tutorial 2 labs.	A2	Transfer function concept, D.C. servo and A.C. servo motors as examples of electromechanical system,	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method	
6	2 theory 1 tutorial 2 labs.	A1, A2	Block diagram algebra, signal flow graphs.	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method	
7	2 theory 1 tutorial 2 labs.	A3	Transient response analysis - Transient response specification	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method	
8-10	2 theory 1 tutorial 2 labs.	A4, A5	Stability Routh's stability criterion. Study state error coefficient. Static error coefficients. Dynamic error coefficients	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method	
11-14	2 theory 1 tutorial 2 labs.	A6	Root locus method of analysis and design Sketch the Root locus for first order system, second order system and higher order system	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method	
15-18	2 theory 1 tutorial 2 labs.	A6	Frequency response methods : Introduction Main concept of Bode.	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method	

			Frequency response measurements. Performance Specifications in frequency domain. Log magnitude and phase Diagrams		
19	2 theory 1 tutorial 2 labs.	A5,A6	Stability in Frequency domain: Nyquist Criterion	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
20	2 theory 1 tutorial 2 labs.	A1	Introduction to digital control systems	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
21	2 theory 1 tutorial 2 labs.	A1	Digital Computer Control System Applications	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
22	2 theory 1 tutorial 2 labs.	A1	Sampled-Data Systems	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
23	2 theory 1 tutorial 2 labs.	A5	Stability of Digital Systems: Jury Test	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
24	2 theory 1 tutorial 2 labs.	A1,A5	Closed-Loop Feedback Sampled- Data Systems	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
25	2 theory 1 tutorial 2 labs.	A1,A5	Closed-Loop Systems with Digital Computer Compensation	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
26-28	2 theory 1 tutorial 2 labs.	A1,A5	Design of digital controller based on root locus	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
26-28	2 theory 1 tutorial 2 labs.	A1,A5	Design of digital controller based on root locus	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method
29-30	2 theory 1 tutorial 2 labs.	A1,A5	Design of digital controller based on continuous controller	From 1 to9 of Teaching and Learning Methods	From 1 to3 of Assessment Method

11. Infrastructure	
1. Books Required reading:	Modern Control Engineering, Ogata K. Fourth edition, Prentice-Hall, 2002.
	Modern Control System Analysis and DesignUsing MATLAB and Simulink, Bishop R., Addison-Wesley ,2000.
2. Main references (sources)	Modern control systems, Drof R. C. and Bishop R, 12 th edition ,Prentice-Hall, 2010
	Feedback control of dynamic systems, Franklin G.F. and et.al., Prentice-Hall, 2006.
	Digital Control Systems Analysis and design, charles H. Philips and et. al. third edition , Prentice-Hall,2001
	Discrete- time control systems , Ogata K., Second edition Prentice-Hall ,1995
A- Recommended books and references (scientific journals, reports).	Feng, "A Survey on Analysis and Design of Model-Based Fuzzy Control Systems", IEEE Trans. Fuzzy Systems, Vol. 14, No. 5, October 2006.
	A. J. Calise et al., "Adaptive Output Feedback Control of Nonlinear Systems using Neural Networks", Elsevier Automatica, Vol. 37, Issue 8, August 2001.
	B. Chen et al., "Composite Nonlinear Feedback Control for Linear Systems With Input Saturation Theory and an Application", IEEE Trans. Automatic Control, Vol. 48, No. 3, March 2003.
B-Electronic references, Internet sites	

12. The development of the curriculum plan

Continuous improvement of curriculum and faculty members through training

Microprocessors and Microcomputers II

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Microprocessors and Microcomputers II COE 303
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects
5. Semester/Year	1st & 2nd semester / Academic Year 2023 – 2022.
6. Number of hours tuition (total)	2 Theory hours per week (60 hours total)1 Tutorial hour per week (30 hours total)2 Lab. hours per week (60 hours total)
7. Date of production/revision of this Specification	October-2022

8. Aims of the Course

1- How to relate the skills and concepts learned from Microprocessor/ Microcomputer I to understand Microprocessor/Microcomputer II

2- Teaching students how to design microprocessor-based embedded systems:

- 3- understand the different components of a microcomputer system
- 4- design some parts of a microcomputer system
- 5- develop the required software to program it

9. Learning Outcomes, Teaching ,Learning and Assessment Method

C. Cognitive goals.

A1. Microprocessor-based microcomputer design.

A2. Memory interface of different microprocessors

A3. Peripheral interfaces

A4. Interrupt driven operation and interface

B. The skills goals special to the course.

B1. How to interface memory to microprocessors with different data bus size. B2. How to interface different I/O devices and control them through software.

B3. How to develop interrupt service procedures and expand the interrupt structure through the 8259A interrupt controller

Teaching and Learning Methods

10.Lectures

11.Homework

12.Lab. Experiments.

13.Discussions.

Assessment methods

1. Lab

2. Ouizzes and exams

- 3. homework
- 4. assignments

C. Affective and value goals C1. Ability to Analyze

C2. Ability to Design

C3. Ability to Problem solving

Teaching and Learning Methods

9. Lectures

10.Homework

11.Lab. Experiments.

12. Discussions

Assessment methods

1. Quizzes and exams

2. homework

3. Lab

4. assignments

D- <u>General and rehabilitative transferred skills(other skills relevant</u> to employability and personal development)

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

- D3. Ability to learn and remember key facts D4. Self-discipline and self-motivation

10. Course Structure						
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method	
1	2 Th. 1 Tu. 2 Lab.	A1	Review of Intel Microprocessors 8088-Pentium hardware and software architecture	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods	
2	2 Th. 1 Tu. 2 Lab.	A1	Memory management in protected mode	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods	
3	2 Th. 1 Tu. 2 Lab.	A1	Memory management in protected mode	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods	
4	2 Th. 1 Tu. 2 Lab.	A2	Memory interface (8- bit)	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods	
5	2 Th. 1 Tu. 2 Lab.	A2	Introduction to 16 bit memory interface	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods	

6	2 Th. 1 Tu. 2 Lab.	A2	Memory interface (16-bit)	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods
7	2 Th. 1 Tu. 2 Lab.	A2	Memory interface (32-bit)	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods
8	2 Th. 1 Tu. 2 Lab.	A2	Memory interface (64-bit)	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods
9	2 Th. 1 Tu. 2 Lab.		Exam		
10	2 Th. 1 Tu. 2 Lab.	A3	Basic I/O interface	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
11	2 Th. 1 Tu. 2 Lab.	A3	Basic I/O interface and studying some I/O devices	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
12	2 Th. 1 Tu. 2 Lab.	A3	8255 Programmable peripheral controller mode 0	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
13	2 Th. 1 Tu. 2 Lab.	A3	8255 Programmable peripheral controller mode 0	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
14	2 Th. 1 Tu. 2 Lab.	A3	8255 Programmable peripheral controller mode 0	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods

15	2 Th. 1 Tu. 2 Lab.	A3	8255 Programmable peripheral controller mode 1	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
16	2 Th. 1 Tu. 2 Lab.	A3	8255 Programmable peripheral controller mode 1 and mode 2	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
17	2 Th. 1 Tu. 2 Lab.	A3	8279 Keyboard/display interface	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
18	2 Th. 1 Tu. 2 Lab.	A3	8279 Keyboard/display interface	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
19	2 Th. 1 Tu. 2 Lab.	A3	8279 Keyboard/display interface	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
20	2 Th. 1 Tu. 2 Lab.		Exam		
21	2 Th. 1 Tu. 2 Lab.	A3	16550 serial communication interface	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods
22	2 Th. 1 Tu. 2 Lab.	A3	8254 Programmable interval timer	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods
23	2 Th. 1 Tu. 2 Lab.	A3	8254 Programmable interval timer	Items 1, 2, and 4 of teaching and	Items 1, 2, and 4 of Assessment methods

				learning	
				methods	
24	2 Th. 1 Tu. 2 Lab.	A4	Interrupt driven I/O devices	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
25	2 Th. 1 Tu. 2 Lab.	A4	8259 Programmable Interrupt controller	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
26	2 Th. 1 Tu. 2 Lab.	A4	8259 Programmable Interrupt controller	Items 1 to 4 of teaching and learning methods	Items 1 to 4 of Assessment methods
27	2 Th. 1 Tu. 2 Lab.	A3	Direct Memory Access I/O devices	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods
28	2 Th. 1 Tu. 2 Lab.	A3	Direct Memory Access I/O devices	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods
29	2 Th. 1 Tu. 2 Lab.	A3	8237 Direct Memory Access Controller	Items 1, 2, and 4 of teaching and learning methods	Items 1, 2, and 4 of Assessment methods
30	2 Th. 1 Tu. 2 Lab.		Exam		

11. Infrastructure	
1. Books Required reading:	• The Intel Microprocessors, 8086/8088, 80186/80188, 80286, Core" by Barray B, Brey
2. Main references (sources)	 The Intel Microprocessors, 8086/8088, 80186/80188, 80286, Core" by Barray B, Brey
A- Recommended books and references (scientific journals, reports).	 Olukotun, Kunle, and Lance Hammond. "The future of microprocessors." Queue 3.7 (2005): 26-29. Venkatachalam, Vasanth, and Michael Franz. "Power reduction techniques for microprocessor systems." ACM Computing Surveys (CSUR) 37.3 (2005): 195-237.
B-Electronic references, Internet sites	Extra lectures by foreign guest lecturers

12. The development of the curriculum plan

Continuous improvement of curriculum and faculty members through training

Operating Systems

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad		
2. University Department/Centre	Computer Engineering Department (COED)		
3. Course title/code	Operating Systems /COE 304		
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30- week regular subjects		
5. Semester/Year	1st & 2nd semester / Academic Year 2023 – 2022.		
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week Theory		
7. Date of production/revision of this Specification	October – 2022		
8. Aims of the Course			

What are the knowledge and skills expected to be attained by the student upon completion of the course (brief description)?

- 1. Present, as clearly and completely as possible, the nature and characteristics of modern day operating systems.
- 2. Provide a thorough discussion of the fundamentals of operating system design and to relate these to contemporary design issues and to current directions in the development of operating systems.
- The course mainly will study: Process management. Synchronization, via semaphore operations, of processes executing within a shared memory. Mapping virtual address to physical addresses in paged and segmentation virtual memory system. Page faulting and page replacement algorithms in virtual memory system. Processor scheduling algorithms.

9. Learning Outcomes, Teaching ,Learning and Assessment Methods

A. Cognitive goals.

A1. Understanding process management, process description, process states, process control block, process switching, mode switching.

A2. Understanding memory management,: partitioning, paging, segmentation .

A3. Understanding virtual memory: paging, segmentation, virtual memory; hardware and control structures.

A4. Processor scheduling: types of processor scheduling, processor scheduling algorithms.

A5. Concurrency, synchronization, mutual exclusion.

B. The skills goals special to the course

B1- Mathematical concepts and basic algorithms for describing and solving engineering problems.

B2 - Initial developments in Computer Architecture majors.

B3 - developing the ability to conduct experiments and analyze data.

B5- Identifying, formulating and solving Computer Architecture problems using modern engineering tools, techniques, and skills,

B6 - cooperation in group projects,

B7 - Developing written and verbal communication skills through presentations from the project results,

B8 - obtaining an appreciation for some of the ethical problems that exist in the practice of the profession.

Teaching and Learning Methods.

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions.
- 6. Connection between Theory and Application.
- 7. Seminars.
- 8. In- and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

- 1-Tests, quizzes.
- 2- Activities.
- 3- Participate during lectures

Assessment methods

- 1- Study the conditions of former graduates.
- 2- Relevant committees in management such as scientific, QA.
- 3- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D-General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1.Thinking of operating system as a supervisor programs, and no H/W without supervisor S/W.

D2.Help students to design and build their OS for different devices.

D3. Writing system software like input/output drivers.

D4. Developing OS for different systems such as embedded systems.

D5. Writing software for controlling devices interfaced to the system.

Week	Hours	ILos	Topic title	Teaching method	Assessment Method
1	3 the.	Item A1	Computer Organization, processor	From 1 to12	From 1 to4
	3 the.		registers instruction	of	of
				T-methods	A-methods
2	3 the.	Items A1,	Interrupts, memory organization	From 1 to12	From 1 to4
		A2		of	of
				T-methods	A-methods
3	3 the.	Item A1	I/O Communication Techniques	From 1 to12	From 1 to4
				of	of
				T-methods	A-methods
4	3 the.	Item A1	The evolution of operating systems,	From 1 to12	From 1 to4
			modern OS	of	of
				T-methods	A-methods
5	3 the.	Item A4	Time-Sharing, multitasking	From 1 to12	From 1 to4
				of	of
				T-methods	A-methods
6	3 the.	Item A1	Process Description	From 1 to12	From 1 to4
			-	of	of
				T-methods	A-methods
7	3 the.	Item A1	Process states	From 1 to12	From 1 to4
				of	of
				T-methods	A-methods

10. Course Structure

8	3 the.	Item A1	Process Control Block	From 1 to12 of	From 1 to4 of
				T-methods	A-methods
9	3 the.	Item A1	Process switching, mode switching	From 1 to12	From 1 to4
				of	of
				T-methods	A-methods
10	3 the.	Item A1	Operating system Kernel	From 1 to12	From 1 to4
				of	of
11	2.41.	Iter A 2	Mana and Mana and Daminum and	T-methods	A-methods
11	3 the.	Item A2	Memory Management Requirements, partitioning	From 1 to12 of	From 1 to4 of
			partitioning	T-methods	A-methods
12	3 the.	Item A2	Paging	From 1 to12	From 1 to4
	5 110	100111112	- "g."g	of	of
				T-methods	A-methods
13	3 the.	Item A2	Segmentation	From 1 to12	From 1 to4
				of	of
				T-methods	A-methods
14	3 the.	Item A3	Virtual memory: paging	From 1 to12	From 1 to4
				of T (1 1	of
15	2 41. 2	Item A3	Vintual manager Commentation	T-methods	A-methods
15	3 the.	Item A3	Virtual memory: Segmentation	From 1 to12 of	From 1 to4 of
				T-methods	A-methods
16	3 the.	Item A3	VM; Hardware and control structures	From 1 to12	From 1 to4
	• • • • • • •			of	of
				T-methods	A-methods
17	3 the.	Item A3	VM: Operating Systems Software	From 1 to12	From 1 to4
				of	of
	0.1	T. 10		T-methods	A-methods
18	3 the.	Item A3	Page faulting: page Replacement	From 1 to12	From 1 to4
			Algorithms	of T-methods	of A-methods
19	3 the.	Item A4	Processor Scheduling	From 1 to12	From 1 to4
	5 110			of	of
				T-methods	A-methods
20	3 the.	Item A4	Types of Scheduling	From 1 to12	From 1 to4
				of	of
	0.1			T-methods	A-methods
21	3 the.	Item A4	Processor Scheduling Algorithms	From 1 to12	From 1 to4
				of T-methods	of A-methods
				I-methous	A-methous
22	3 the.	Item A5	Principles of Concurrency	From 1 to12	From 1 to4
				of	of
	0.1			T-methods	A-methods
23	3 the.	Item A5	Mutual Exclusion	From 1 to12	From 1 to4
				of T-methods	of A-methods
24	2 the.	Item A5	Synchronization	From 1 to12	From 1 to4
	2 the. 2 exp.		Synchi onization	of	of
	- •b.			T-methods	A-methods
25	3 the.	Item A5	Mutual Exclusion: Software Support	From 1 to12	From 1 to4
				of	of

				T-methods	A-methods
26	3 the.	Item A5	Mutual Exclusion: Hardware Support	From 1 to12	From 1 to4
				of T-methods	of A-methods
27	3 the.	Item A5	Starvation, Deadlock	From 1 to12	From 1 to4
				of	of
				T-methods	A-methods
28	3 the.	Item A5	Special Machine Instructions	From 1 to12	From 1 to4
				of	of
				T-methods	A-methods
29	3 the.	Item A5	Semaphores	From 1 to12	From 1 to4
			-	of	of
				T-methods	A-methods
30	3 the.	Item A5	Message Passing	From 1 to12	From 1 to4
				of	of
				T-methods	A-methods

11. Infrastructure	
1. Dooks Required reading.	Operating Systems by William Stallings, Pearson International Edition, Eighth Edition, 2015.
2. Main references (sources)	 Operating Systems Concepts by: Abraham Silberscatz, Peter B. galvin, International Student Edition, 8th Edition, 2010. Operating Systems by Ramez Elmasri, McGRAW-HILL International Edition, 2010. Operating Systems by: H. M. Deitel, Prentice Hall, 3rd Edition,2004.

A- Recommended books and references (scientific journals, reports).	 Comparison of different Operating System by Niti gupta , Amrita ticku, Manoj kumar3. Proceedings of National Conference on Recent Advances in Electronics and Communication Engineering (RACE-2014), 28-29 March 2014. Operating System and Decision Making by: Hussain A. Alhassan, Dr. Christian Bach. ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA. Comparative Study of Different Mobile Operating Systems by: T.N.Sharma, Mahender Kr. Beniwal, Arpita Sharma. International Journal of Advancements in Research & Technology, Volume 2, Issue3, March-2013.
	Extra lectures by foreign guest lecturers Available websites related to the subject

The development of the curriculum plan by updating the references

Computer Networks

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Computer Networks/COE 305
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects
5. Semester/Year	1st & 2nd semester / Academic Year 2023 – 2022.
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week Theory. 60 hrs. / 2 hrs. per week Lab.
7. Date of production/revision of this Specification	October-2022
8. Aims of the Course	

- 1. What are the knowledge and skills expected to be attained by the student upon completion of the course (brief description)?
- 2. As a brief description for the Goals and objectives, by the completion of the course the goals are:
- 3. Introduce the concepts and meaning of network in live and work.
- 4. Understand "How it Works?" of every little detail of information transmit from sender to receiver through whole media.
- 5. Compare the differences of using certain media instead of others.
- 6. Ability to cope with the accelerated knowledge of the computer networks fields.

Learning the concepts of common network devices, such as routers, switches, servers ...etc, which are the nerves of any network all over the world.

 $9^{\,\cdot}$ Learning Outcomes, Teaching , Learning and Assessment Method

A. Cognitive goals

A1. Design a complete network project: give the correct decisions of choosing devices, doing all cabling work, and complete configuration of end user devices such as computer and servers.

A2. Analyze the addressing schemes through OSI layers (MAC, IP and Port Addressing).

A3. Trouble shoots and maintains problems that occur in networks through confident list of cause and effect (reason and answer).

A4. Configure Cisco Routers through the use of static and dynamic routing protocols.

A5. Ability to calculate and classify any given IP address

B. The skills goals special to the course.

B1. Know all parts and levels of network.

B2. Network maintenance and developing.

Teaching and Learning Methods

- 1. Lectures
- 2. Homework
- 3. Lab. Experiments.
- 4. Discussions.

Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Method

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Lab. Experiments.
- 5. Tests and Exams.
- 6. In-Class Questions and Discussions.
- 7. Connection between Theory and Application.
- 8. Field Trips.
- 9. Extracurricular Activities.
- 10. Seminars.
- 11. In- and Out-Class oral conservations.
- 12. Reports, Presentations, and Posters.

Assessment Methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.
- 4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor)

D-General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts D4. Self-discipline and self-motivation

10.Course Structure:

Weak	Hours	ILos	Topic title	Teaching method	Assessment Method
1	3 the. 2 exp.	Item A1	Introduction to computer Networks	From 1 to12 of T-Methods	From 1 to4 of A-Methods
2	3 the. 2 exp.	Item A1	Introduction to computer Networks	From 1 to12 of T-Methods	From 1 to4 of A-Methods
3	3 the. 2 exp.	Item A1	Introduction to computer Networks	From 1 to12 of T-Methods	From 1 to4 of A-Methods
4	3 the. 2 exp.	Item A1	Principles of Network Applications	From 1 to12 of T-Methods	From 1 to4 of A-Methods
5	3 the. 2 exp.	Item A1	The Web and HTTP	From 1 to12 of T-Methods	From 1 to4 of A-Methods
6	3 the. 2 exp.	Item A1	The Web and HTTP	From 1 to12 of T-Methods	From 1 to4 of A-Methods
7	3 the. 2 exp.	Item A1	DNS	From 1 to12 of T-Methods	From 1 to4 of A-Methods
8	3 the. 2 exp.	Item A1	Introduction to Transport Layer	From 1 to12 of T-Methods	From 1 to4 of A-Methods
9	3 the. 2 exp.	Item A1	UDP	From 1 to12 of T-Methods	From 1 to4 of A-Methods
10	3 the. 2 exp.	Item A1	Principles of Reliable Data Transfer	From 1 to12 of T-Methods	From 1 to4 of A-Methods
11	3 the. 2 exp.	Item A1	ТСР	From 1 to12 of T-Methods	From 1 to4 of A-Methods
12	3 the. 2 exp.	Item A1	Pipelined Protocols	From 1 to12 of T-Methods	From 1 to4 of A-Methods
13	3 the. 2 exp.	Item A1	Flow control	From 1 to12 of T-Methods	From 1 to4 of A-Methods

14	3 the.	Item A1	Principles of Congestion Control	From 1 to12	From 1 to4
	2 exp.			of T-Methods	of A-Methods
15	3 the.	Item A1	TCP Congestion Control	From 1 to12	From 1 to4
	2 exp.			of T-Methods	of A-Methods
16	3 the.	Item A2	Introduction to Network Layer	From 1 to12	From 1 to4
	2 exp.			of	of
				T-Methods	A-Methods
17	3 the.	Item A2	Virtual Circuit and Datagram Networks	From 1 to12 of	From 1 to4 of
	2 exp.			T-Methods	A-Methods
18	3 the.	Item A2	The Router Internals	From 1 to12	From 1 to4
	2 exp.			of	of
10	2 41 -	Item A2	The Internet Director of (ID)	T-Methods	A-Methods
19	3 the. 2 exp.	nem A2	The Internet Protocol (IP)	From 1 to12 of	From 1 to4 of
	2 C Ap.			T-Methods	A-Methods
20	3 the.	Item A2	Routing Algorithms	From 1 to12	From 1 to4
	2 exp.			of	of
21	3 the.	Item A2	Routing Algorithms	T-Methods From 1 to12	A-Methods From 1 to4
21	2 exp.		Routing Argontums	of	of
				T-Methods	A-Methods
22	3 the.	Item A2	Routing in the Internet	From 1 to12	From 1 to4
	2 exp.			of T Mathada	of A-Methods
23	3 the.	Item A2	Broadcast and Multicast Routing	T-Methods From 1 to12	From 1 to4
	2 exp.	100111 7 12	Dioudeust and Mathemst Roading	of	of
				T-Methods	A-Methods
24	3 the.	Item A3	Introduction to Data Link Layer	From 1 to12	From 1 to4
	2 exp.			of T-Methods	of A-Methods
25	3 the.	Item A3	Error Detection and Correction	From 1 to12	From 1 to4
	2 exp.		Techniques	of	of
26	2.1			T-Methods	A-Methods
26	3 the. 2 exp.	Item A3	Multiple Access Links and Protocols	From 1 to12 of	From 1 to4 of
	2 C Ap.			T-Methods	A-Methods
27	3 the.	Item A4,	Switched LANs	From 1 to12	From 1 to4
	2 exp.	A5		of	of
28	3 the.	Item A4,	LAN Virtualization	T-Methods From 1 to12	A-Methods From 1 to4
20	2 exp.	A5		of	of
	Γ.			T-Methods	A-Methods
29	3 the.	Item A4,	Data Center Networking	From 1 to12	From 1 to4
	2 exp.	A5		of T-Methods	of A-Methods
30	3 the.	Item A4,	Physical Layer	From 1 to12	A-Methods From 1 to4
	2 exp.	A5	Thy bleat Day of	of	of
				T-Methods	A-Methods

11. Infrastructure				
1. Books Required reading:	• Computer Network A Top Down Approach, by <i>James F. Kourse</i> , 6 th edition 2017.			
2. Main references (sources)	 Data Communications and Networking, by <i>Behrouz A. Forouzan</i>, 5th Edition 2013. Computer Network by <i>Andrew S. Tanenbaum</i>, 5th Edition 2011. TCP/IP Protocol Suite, by <i>Behrouz A. Forouzan</i>, 4th Edition 2010. Data and Computer Communications, by <i>William Stallings</i>, 10th Edition 2014. 			
A- Recommended books and references (scientific journals, reports).	 Paper1: Wu, C., et al.: WILL: Wireless indoor Localization without site survey. IEEE Trans. Parallel Distrib. Syst. 24(4), 839-848(2013). Paper2: Vucic, J. and Langer, KD., "High-speed visible light communications: Stateof-the-art," in [Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference], 1–3 (2012. J. Korhonen, Y. Wang, "Effect of packet size on loss rate and delay in wireless links," Wireless Communications and Networking Conference, 2005 IEEE , vol.3, no., pp. 1608- 1613 Vol. 3, 13-17 March. 			
B-Electronic references, Internet sites	 Available websites related to the subject Extra lectures by foreign guest lecturers 			

12.	The	development of the curriculum plan	

Digital Signal Processing

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad	
2. University Department/Centre	Computer Engineering Department (COED)	
3. Course title/code	Digital Signal Processing (DSP)	
	/COE 306	
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects	
5. Semester/Year	1st & 2nd semester / Academic Year 2023 – 2022.	
6. Number of hours tuition (total)	60 hrs. / 2 hrs. per week.	
7. Date of production/revision of this Specification	October-2022	
8. Aims of the Course		

As a brief description, the Goals and objectives by the completion of the course are:

- 1. To learn the distinction between continuous-time and discrete-time systems and their applications, then provide a thorough discussion of the fundamentals of these system and to relate these to the current directions in the development of digital system.
- 2. To understand the specific ways to design digital filters.
- 3. To make use of frequency domain properties and learn the nature of signals and systems.
- 9. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Cognitive goals.

A1. An ability to read and comprehend DSP literature at an appropriate level.

A2. An ability both to follow correctly and to construct mathematical proofs of appropriate degrees of complexity.

- A3. An understanding of time-domain and frequency-domain analysis.
- A4. An appreciation of the importance of DSP for computer engineers.
- B. The skills goals special to the course.
 - B1. Develop the ability of Digital filter design.
 - B2. Increase the ability of mathematic analysis
 - B3. Develop the ability of DSP design using computer system.

Teaching and Learning Methods

- 1. Lectures
- 2. Homework
- 3. Lab. Experiments.
- 4. Discussions.
- 5. Seminar.

Assessment methods

- 1. Oral Quizzes.
- 2. Quizzes and exams
- 3. homework
- 4. assignments

C. Affective and value goals

C1. Minimization using mathematical simplification.

C2. Developing systems by digital features.

C3. Thinking to live in digital world.

Teaching and Learning Methods

- 1. Lectures
- 2. Homework
- 3. Lab. Experiments.
- 4. Discussions

Assessment methods

Quizzes and exams

- 2. homework
- 3. Lab
- 4. assignments

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Developing digital processes.

D2. Using special DSP H/W in digital design.

D3. Analysis of special DSP processors.

10. Course Structure

week	Hours	ILos	Topic title	Teaching method	Assessment Method
1	2 the.	Items A1 & A2	Basic Concepts of DSP	From 1 to 12 of T-Methods	From 1 to4 of A-Methods
2	2 the	Items A1 & A2	Properties of systems and signals	From 1 to 12 of T-Methods	From 1 to4 of A-Methods

3	2 the	Items A1 & A2	linear Time-Invariant (LTI) systems	From 1 to 12 of	From 1 to4 of
				T-Methods	A-Methods
4	2 the	Items A1	Basic types of discrete-time signals	From 1 to	From 1 to4
		& A2		12 of	of
				T-Methods	A-Methods
5	2 the	Items A1	Sampling Theory	From 1 to	From 1 to4
		& A2		12 of	of
				T-Methods	A-Methods
6	2 the	Items A1	Quantization Theory	From 1 to	From 1 to4
		& A2		12 of	of
				T-Methods	A-Methods
7	2 the	Items A1	Quantization Theory + Quiz	From 1 to	From 1 to4
		& A2		12 of	of
-	0.1	T. 4.1		T-Methods	A-Methods
8	2 the	Items A1	Difference equations	From 1 to	From 1 to4
		& A2		12 of	of
0	2.4	T/ A 1		T-Methods	A-Methods
9	2 the	Items A1 & A2	Convolution	From 1 to 12 of	From 1 to4 of
		α AZ		T-Methods	A-Methods
10	2 the	Items A1	Discrete Convolution	From 1 to	From 1 to4
10	2 the	& A2	Discrete Convolution	12 of	of
		a A2		T-Methods	A-Methods
11	2 the	Items A1 -	Frequency domain analysis+ Quiz	From 1 to	From 1 to4
	2 110	A2	requency domain analysis (Quiz	12 of	of
		112		T-Methods	A-Methods
12	2 the	Items A1 -	Frequency response	From 1 to	From 1 to4
		A2		12 of	of
				T-Methods	A-Methods
13	2 the	Items A1 -	The discrete Fourier Series (DFS)	From 1 to	From 1 to4
		A2		12 of	of
				T-Methods	A-Methods
14	2 the	Items A1 -	The discrete-time Fourier transform	From 1 to	From 1 to4
		A2	(DTFT)	12 of	of
				T-Methods	A-Methods
15	2 the	Items A1 -	The discrete Fourier transform (DFT)	From 1 to	From 1 to4
15	2 the	A2	The discrete Fourier transform (DFT)	12 of	of
		T L		T-Methods	A-Methods
16	2 the	Items A1 -	The fast Fourier transform (FFT)	From 1 to	From 1 to4
		A2	()	12 of	of
				T-Methods	A-Methods
17	2 the	Items A1 -	Quiz	From 1 to	From 1 to4
		A2		12 of	of
				T-Methods	A-Methods
18	2 the	Items A1 -	The Z-transform	From 1 to	From 1 to4
		A3		12 of	of
				T-Methods	A-Methods
19	2 the	Items A1 -	The Inverse of Z-transform	From 1 to	From 1 to4
		A3		12 of	of
		-		T-Methods	A-Methods
20	2 the	Items A1 -	Infinite Impulse Response Filter Design	From 1 to	From 1 to4
		A3	(IIR design Part 1)	12 of	of

				T-Methods	A-Methods
21	2 the	Items A1 -	Infinite Impulse Response Filter Design	From 1 to	From 1 to4
		A3	(IIR design Part 2)	12 of	of
			(IIK design 1 art 2)	T-Methods	A-Methods
22	2 the	Items A1 -	The windowing method	From 1 to	From 1 to4
		A3		12 of	of
				T-Methods	A-Methods
23	2 the	Items A1 -	The finite-impulse response (FIR)	From 1 to	From 1 to4
		A3	digital filters	12 of	of
	A 1			T-Methods	A-Methods
24	2 the	Items A1 -	Design of FIR digital filters	From 1 to	From 1 to4
		A3		12 of	of
	0.1	T. A 1		T-Methods	A-Methods
25	2 the	Items A1 -	Quiz+ Seminars	From 1 to	From 1 to4
		A3		12 of	of
26	2.41	T4		T-Methods	A-Methods
26	2 the	Items A1 -	Analog filter design	From 1 to	From 1 to4 of
		A3		12 of T-Methods	A-Methods
27	2 the	Items A1 -	The impulse invariance method	From 1 to	From 1 to4
<u> </u>	2 the	A3	The impulse invariance method	12 of	of
		AJ		T-Methods	A-Methods
28	2 the	Items A1 -	Quiz+ Seminars	From 1 to	From 1 to4
20	2 110	A3	Quiz+ Seminars	12 of	of
		115		T-Methods	A-Methods
29	2 the	Items A1 -	The bilinear transformation method	From 1 to	From 1 to4
	2 1110	A3		12 of	of
		- 10		T-Methods	A-Methods
30	2 the	Items A1 -	The bilinear transformation method	From 1 to	From 1 to4
		A4		12 of	of
				T-Methods	A-Methods

11. Infrastructure				
1. Books Required reading:	 Tan, Lizhe, and Jean Jiang. Digital signal processing: fundamentals and applications. Academic Press, 2018. Proakis, J.G., Digital signal processing: principles, algorithms and applications. 2001: Pearson Education India. 			

2. Main references (sources)	 Smith, S. (2013). Digital signal processing: a practical guide for engineers and scientists. Elsevier. Lectures on Statistical Signal Processing Paperback – June 5, 2016 by Prof Nuha A. S. Alwan. L. C. Ludeman, "Fundamentals of digital signal processing", Harper and Row, 1986. 	
A- Recommended books and references (scientific journals, reports).	 D.S. Kim et al., "Auditory Processing of Speech Signals for Robust Speech Recognition in Real-World Noisy Environments", IEEE Trans. Speech and Audio Processing, Vol. 7, No. 1, January 1999. S. Lawrence Marple Jr., "Computing the Discrete-Time 'Analytic' Signal Via FFT", IEEE Trans. Signal Processing, Vol. 47, No. 9, September 1999. 	
B-Electronic references, Internet sites	Available websites related to the subject.	

12. The development of the curriculum plan

Continuous improvement of curriculum and faculty members through training programs. And strengthening a number of faculty members for the higher scientific classes.

Database Systems

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Database System/ COE 307
	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects
5. Semester/Year	1st & 2nd semester / Academic Year 2022 – 2023.
6. Number of hours tuition (total)	60 hrs. / 2 hrs. per week .
7. Date of production/revision of this Specification	October / 2022
8 Aims of the Course	

What are the knowledge and skills expected to be attained by the student upon completion of the course (brief description)?

Upon completion of this course the student will be able to:

1. Demonstrate a working knowledge of a particular Database Management System (in Access 2016).

2. Plan, define and design a database.

3. Explain the value of using a Database Management System to store and retrieve information.

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Cognitive goals

What is the knowledge and skills expected to be attained by the student upon completion of the course (should be measurable)?

The student will understand:

- A1. What the database is, what the different types of databases are.
- A2. The main functions of database management system.
- A3. How data models can be classified.
- A4. The relational database model.
- A5. How data redundancy is handled in the relational database model.
- A6. Design database model using ERD.
- A7. What is normalization?
- A8. Advanced Data Modeling.
- A9. Database Design.
- A10. What is the distributed database system?
- B. The skills goals special to the course.
 - B1. Realizing the Database important.
 - B2. Designing and modeling some database applications.

Teaching and Learning Methods

- 1. Lectures
- 2. Homework

3. Lab. Experiments.

4. Discussions.

Assessment methods

- 1. Lab
- 2. Quizzes and exams
- 3. homework
- 4. assignments

C. Affective and value goals

C1. Understanding the database concepts.

C2. Understanding database instructions.

C4. Understanding database responsibility of different parameters.

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. Thinking of database as a supervisor programs, and no H/W without supervisor S/W.

D2.Help students to design and build their database programs.

D3. Writing database codes.

D4. Developing OS for different systems such as embedded systems.

week	Hours	ILos	Topic title	Teaching method	Assessment Method
1	2 the. 2 exp.	From 1 to 3 of section 10	File systems and database	From 1 to12 of section 11	From 1 to4 of section 12
2	2 the. 2 exp.	From 1 to 3 of section 10	File systems and database	From 1 to12 of section 11	From 1 to4 of section 12
3	2 the. 2 exp.	From 1 to 3 of section 10	File systems and database	From 1 to12 of section 11	From 1 to4 of section 12
4	2 the. 2 exp.	Item 6 of section 10	Data Models :Data Model Basic Building Blocks	From 1 to12 of section 11	From 1 to4 of section 12

10.Course Structure

_		T ()		T	
5	2 the. 2 exp.	Item 6 of section 10	Data Models : Business Rules	From 1 to12 of section 11	From 1 to4 of section 12
6	2 the. 2 exp.	Item 6 of section 10	Data Models : The Evolution of Data Models	From 1 to12 of section 11	From 1 to4 of section 12
7	2 the. 2 exp.	Item 6 of section 10	Data Models :Degrees of Data Abstraction	From 1 to12 of section 11	From 1 to4 of section 12
8	2 the. 2 exp.	Item 6 of section 10	Design concepts: The Relational Database Model	From 1 to12 of section 11	From 1 to4 of section 12
9	2 the. 2 exp.	Item 6 of section 10	Design concepts: Entity Relationship (ER) Modeling	From 1 to12 of section 11	From 1 to4 of section 12
10	2 the. 2 exp.	Items 4,5 of section 10	Design concepts: Relational Algebra	From 1 to12 of section 11	From 1 to4 of section 12
11	2 the. 2 exp.	Items 4,5 of section 10	Design concepts: Data Redundancy	From 1 to12 of section 11	From 1 to4 of section 12
12	2 the. 2 exp.	Items 4,5 of section 10	Entity relationship modeling	From 1 to12 of section 11	From 1 to4 of section 12
13	2 the. 2 exp.	Items 4,5 of section 10	Entity relationship modeling	From 1 to12 of section 11	From 1 to4 of section 12
14	2 the. 2 exp.	Items 4,5 of section 10	Developing an ER Diagram	From 1 to12 of section 11	From 1 to4 of section 12
15	2 the. 2 exp.	Item 7 of section 10	Normalization of Database Tables	From 1 to12 of section 11	From 1 to4 of section 12
16	2 the. 2 exp.	Item 7 of section 10	Normalization of Database Tables	From 1 to12 of section 11	From 1 to4 of section 12
17	2 the. 2 exp.	Item 7 of section 10	Normalization of Database Tables	From 1 to12 of section 11	From 1 to4 of section 12

10		Item 7 of	Denemoslisetien	Ensue 1 4:12	Enormal to 1
18	2 the. 2 exp.	section 10	Denormalization	From 1 to12 of section 11	From 1 to4 of section 12
19	2 the. 2 exp.	Item 8 of section 10	Advanced Data Modeling	From 1 to12 of section 11	From 1 to4 of section 12
20	2 the. 2 exp.	Item 8 of section 10	The Extended Entity Relationship Model	From 1 to12 of section 11	From 1 to4 of section 12
21	2 the. 2 exp.	Item 8 of section 10	Entity Integrity: Selecting Primary Keys	From 1 to12 of section 11	From 1 to4 of section 12
22	2 the. 2 exp.	Item 9 of section 10	Database Design: The Information System	From 1 to12 of section 11	From 1 to4 of section 12
23	2 the. 2 exp.	Item 9 of section 10	Database Design: The Systems Development Life Cycle	From 1 to12 of section 11	From 1 to4 of section 12
24	2 the. 2 exp.	Item 9 of section 10	Database Design: The Database Life Cycle	From 1 to12 of section 11	From 1 to4 of section 12
25	2 the. 2 exp.	Item 10 of section 10	Database Design: Conceptual Design	From 1 to12 of section 11	From 1 to4 of section 12
26	2 the. 2 exp.	Item 10 of section 10	Database Design: Logical Design and Physical Design	From 1 to12 of section 11	From 1 to4 of section 12
27	2 the. 2 exp.	Item 10 of section 10	Database Performance Tuning and Query Optimization	From 1 to12 of section 11	From 1 to4 of section 12
28	2 the. 2 exp.	Item 10 of section 10	Database Performance Tuning and Query Optimization	From 1 to12 of section 11	From 1 to4 of section 12
29	2 the. 2 exp.	Item 10 of section 10	Distributed systems	From 1 to12 of section 11	From 1 to4 of section 12
30	2 the. 2 exp.	Item 10 of section 10	Distributed systems	From 1 to12 of section 11	From 1 to4 of section 12

11. Infrastructure	
1. Books Required reading:	Database systems (design, implementation and management).by Beter Rob and Carlos Coronel, 14 th Edition 2019.
2. Main references (sources)	 Database design and programming with Access, SQL and Visual Basic, by John Carter, 2019. 2 -Database Design, and Application Development & Administration
A- Recommended books and references (scientific journals, reports).	 Centralized vs. Distributed Databases. Case Study, by Nicoleta Magdalena Iacob1, Mirela Liliana Moise2, 2015 A Comparative Study of Databases with Different Methods of Internal Data Management, by Mokhtar A. Alworafi, Atyaf Dhari, Asma A. Al- Hashmi, 2016.
B-Electronic references, Internet sites	 Available websites related to the subject Extra lectures by foreign guest lecturers

12. The development of the curriculum

Continuous improvement of curriculum and faculty members through training programs.

Fourth Stage

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Internet Technology

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Internet Technology / COE 401
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1 st & 2 nd / Academic Year 2023 – 2022
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week Theory.60 hrs. / 2 hrs. per week Lab.
7. Date of production/revision of this Specification	October-2022

8. Aims of the Course

As a brief description for the Goals and objectives, by the completion of the course the goals are:

- 1. Develop the ability to apply knowledge of Internet Service Providers Types and Switching Types and the Important Internet Protocols and the type of the broadband connection to the end user.
- 2. Develop skills to communicate effectively through seminars and homework.
- 3. Prepare students to be active at the practical life after graduate.

9. Learning Outcomes, Teaching , Learning and Assessment Method

C- Cognitive goals:

A1. Write RTL for hardware jobs.

A2. Define and explain the principles of Internet Technology and the interfacing between its hardware and software components

A3. Understand the data path inside Internet.

A4. Understand the Internet Technology organization

A5. Know the organization and architecture of the Internet with an emphasis on the user's view of the computer Network.

A6. Understand of layers of protocol and network.

A7. Understand of architectural blocks involved in Internet Technology.

A8. Understand problems of speed and congestion in Internet networks.

A9. Analyze Internet and cloud structures.

A10. Understand Internet architectures.

B. The skills goals special to the course

B1- Mathematical concepts and basic algorithms for describing and solving engineering problems.

B2 - Initial developments in Internet Technology majors.

B3 - developing the ability to conduct experiments and analyze data.

B5- Identifying, formulating and solving Internet Technology problems using modern engineering tools, techniques, and skills,

B6 - cooperation in group projects,

B7 - Developing written and verbal communication skills through presentations from the project results,

B8 - obtaining an appreciation for some of the ethical problems that exist in the practice of the profession.

10. Teaching and Learning Methods.

9. Lectures.

10. Tutorials.

- 11. Homework and Assignments.
- 12. Tests and Exams.
- 13. In-Class Questions and Discussions.
- 14. Connection between Theory and Application.
- 15. Seminars.
- 16. In- and Out-Class oral conservations.

9. Reports, Presentations, and Posters.

Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

Grading Policy

1. Exams and Quizzes: There will be at least seven closed books and notes exams and quizzes during the academic year.

2. Oral and written assessment: The students are encouraged to participate their ideas to solve the problems during the lecture. The oral and written assessment.

3. Final Exam: - The final exam will be comprehensive, closed books and notes.

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

1-Tests, quizzes.

2- Activities.

3- Participate during lectures

Assessment methods

- 4- Study the conditions of former graduates.
- 5- Relevant committees in management such as scientific, QA.
- 6- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D- <u>General and rehabilitative transferred skills(other skills relevant to</u> <u>employability and personal development)</u>

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts D4. Self-discipline and self-motivation

10. Course Structure

weak	Hours	ILOs	Topic title	Teaching method	Assessment Method
1	2 the. 2 exp.	Item 1 of section 10	Introduction	From 1 to12 of section 11	From 1 to4 of section 12
2	2 the. 2 exp.	Item 1 of section 10	ISP (Internet Service Provider)	From 1 to12 of section 11	From 1 to4 of section 12
3	2 the. 2 exp.	Item 1 of section 10	ISP (Internet Service Provider)	From 1 to12 of section 11	From 1 to4 of section 12
4	2 the. 2 exp.	Item 1 of section 10	Web Hosting	From 1 to12 of section 11	From 1 to4 of section 12
5	2 the. 2 exp.	Item 1 &2 of section 10	Content Delivery Networks	From 1 to12 of section 11	From 1 to4 of section 12
6	2 the. 2 exp.	Item 1 & 2 of section 10	Content Delivery Networks	From 1 to12 of section 11	From 1 to4 of section 12
7	2 the. 2 exp.	Item 1&2 of section 10	Circuit Switching	From 1 to12 of section 11	From 1 to4 of section 12
8	2 the. 2 exp.	From 1 to 3of section 10	Circuit Switching	From 1 to12 of section 11	From 1 to4 of section 12
9	2 the. 2 exp.	From 1 to 3of section 10	Dedicated Circuits	From 1 to12 of section 11	From 1 to4 of section 12
10	2 the. 2 exp.	From 1 to 3of section 10	Dedicated Circuits	From 1 to12 of section 11	From 1 to4 of section 12
11	2 the. 2 exp.	From 1 to 3of section 10	Dedicated Circuits	From 1 to12 of section 11	From 1 to4 of section 12
12	2 the. 2 exp.	From 1 to 3of section 10	Packet Switching.	From 1 to12 of section 11	From 1 to4 of section 12
13	2 the. 2 exp.	From 1 to 3of section 10	Packet Switching.	From 1 to12 of section 11	From 1 to4 of section 12
14	2 the. 2 exp.	From 1 to 3of section 10	Packet Switching.	From 1 to12 of section 11	From 1 to4 of section 12
15	2 the. 2 exp.	From 1 to 3of section 10	Broadband Internet Access Technologies.	From 1 to12 of section 11	From 1 to4 of section 12
16	2 the. 2 exp.	From 1 to 3of section 10	Broadband Internet Access Technologies.	From 1 to12 of section 11	From 1 to4 of section 12

17	2 the. 2 exp.	From 1 to 3 of section 10	Broadband Internet Access Technologies.	From 1 to12 of section 11	From 1 to4 of section 12
18	2 the. 2 exp.	From 1 to 3of section 10	Broadband Internet Access Technologies.	From 1 to12 of section 11	From 1 to4 of section 12
19	2 the. 2 exp.	From 1 to 3of section 10	ARP	From 1 to12 of section 11	From 1 to4 of section 12
20	2 the. 2 exp.	From 1 to 3of section 10	ARP	From 1 to12 of section 11	From 1 to4 of section 12
21	2 the. 2 exp.	From 1 to 3of section 10	FTP	From 1 to12 of section 11	From 1 to4 of section 12
22	2 the. 2 exp.	From 1 to 3of section 10	FTP	From 1 to12 of section 11	From 1 to4 of section 12
23	2 the. 2 exp.	From 1 to 3of section 10	Email.	From 1 to12 of section 11	From 1 to4 of section 12
24	2 the. 2 exp.	From 2 to 5of section 10	Email.	From 1 to12 of section 11	From 1 to4 of section 12
25	2 the. 2 exp.	From 2 to 5of section 10	Email.	From 1 to12 of section 11	From 1 to4 of section 12
26	2 the. 2 exp.	From 2 to 5of section 10	DNS	From 1 to12 of section 11	From 1 to4 of section 12
27	2 the. 2 exp.	From 2 to 5of section 10	DNS	From 1 to12 of section 11	From 1 to4 of section 12
28	2 the. 2 exp.	From 2 to 5of section 10	DNS	From 1 to12 of section 11	From 1 to4 of section 12
29	2 the. 2 exp.	From 2 to 5of section 10	DNS	From 1 to12 of section 11	From 1 to4 of section 12

11. Infrastructure	
1. Books Required reading:	 Oliver Heckmann, "THE COMPETITIVE INTERNET SERVICE PROVIDER ", 2006, John Wiley & Sons Ltd. Margaret Levine Young et al, "Internet: The Complete Reference ", 2nd Edition, 2002, McGraw-Hill. Edward Insam, "TCP/IP Embedded Internet Applications ", 1st publish Edition, 2003, Linacre House, Jordan Hill. Huub van Helvoort, "Next Generation SDH/SONET Evolution or Revolution?", 2005, John Wiley & Sons Ltd. Eric A. Hall, "Internet Core Protocols The Definitive Guide", 2000, O'Reilly & Associates, Inc.
2. Main references (sources)	 Oliver Heckmann, "THE COMPETITIVE INTERNET SERVICE PROVIDER ", 2006, John Wiley & Sons Ltd. Margaret Levine Young et al, "Internet:

A- Recommended books and references (scientific journals, reports).	 PAPERS 1. Pallis, George, and Athena Vakali. "Insight and perspectives for content delivery networks." Communications of the ACM 49.1 (2006): 101- 106. 2. Bertschek, Irene, Daniel Cerquera, and Gordon J. Klein. "More bits-more bucks? Measuring the impact of broadband internet on firm performance." Information Economics and Policy 25.3 (2013): 190-203. 3. Van der Wee, Marlies, et al. "Techno- economic evaluation of open access on FTTH networks." IEEE/OSA Journal of Optical Communications and Networking 7.5 (2015): 433-444.
B-Electronic references, Internet sites	 Laboratory experiments in the (Computer network Lab) of the department. Available websites related to the subject Extra lectures by foreign guest lecturers

12.The development of the curriculum plan Continuous developing academic curriculum line with the scientific development

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Computer Architecture II

COURSE SPECIFICATION

This course covers the current the advancement in computer architecture including the internal organization of processors, multi-core CPU's architecture, many-core PU's architecture, and the memory hierarchy. The learning outcomes that a typical student might reasonably be expected to achieve are based on the three tenets that all computer architects and designers are believed on, namely: parallelism, pipelining and the principle of locality. In doing so, the student takes full advantage of the learning opportunities to participate and contribute to modern research and development that reflects the state-of-the-art as well as the art-of-the-practice in modern computer design and computing in both hardware and software domain.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Computer Architecture II / COE 402
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular
5. Semester/Year	1 st & 2 nd / Academic Year 2023 – 2022
6. Number of hours tuition (total)	90hrs. / 3 hrs. per week Theory.
7. Date of production/revision of this Specification	October-2022
8. Aims of the Course	

- Explore the advancement in computer architecture and makes the student ready to design and facilitate the current trends in computer architecture. This involve:
- How to determine the performance of computer in both theoretical and practical manner.
- Understanding the Moore's law and its impact on computer engineering.
- Understanding the pipelining principle for both static and dynamic pipeline and three hazards encounter in pipeline, namely: Structural hazards, Data hazards, and branch hazards. In addition, the current trends to solve these hazards. Furthermore, how to deal with Interrupt and Exception behavior from the computer architects point of view.
- Understanding compiler optimization, loop unrolling, branch prediction.
- Understanding ILP, TLP, DLP
- Understanding the Advanced Pipelining, involve: super scalar, VLIW, and software pipelining.
- Going from unicore to multicore and many core architecture, and discuss the principle of "lazy boy era is finished". This involve: implicit and explicit threading and processing, fine-grained, coarse grained, and SMT multithreading from hardware point of view and leads to concrete understanding and imagination of the sole of this subject.
- Understanding the memory Hierarchy design and Organization, how the cache memory work and the 4C's principle in Cache memory.

$9\cdot$ Learning Outcomes, Teaching , Learning and Assessment Method

A- Cognitive goals:

A1. Write RTL for hardware jobs.

A2. Define and explain the principles of Computer Architecture and the interfacing between its hardware and software components

A3. Understand the data path inside Computer Architecture.

A4. Understand the Computer Architecture organization

A5. Know the organization and architecture of the Internet with an emphasis on the user's view of the computer Network.

A6. An appreciation of the importance of proof, generalization and abstraction in the logical development of formal theories

A7. Understand of architectural blocks involved in computer architecture.

A8. Understand problems of Computer Architecture.

A9. How to apply Engineering analysis (time, cost, performance) in Computer design. A10. Understand Internet architectures. B. The skills goals special to the course

B1- Mathematical concepts and basic algorithms for describing and solving engineering problems.

B2 - Initial developments in Internet Technology majors.

B3 - developing the ability to conduct experiments and analyze data.

B5- Identifying, formulating and solving Internet Technology problems using modern engineering tools, techniques, and skills,

B6 - cooperation in group projects,

B7 - Developing written and verbal communication skills through presentations from the project results,

B8 - obtaining an appreciation for some of the ethical problems that exist in the practice of the profession.

Teaching and Learning Methods.

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions.
- 6. Connection between Theory and Application.
- 7. Seminars.
- 8. In- and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment Methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

- 1-Tests, quizzes.
- 2- Activities.
- 3- Participate during lectures

Assessment methods

- 7- Study the conditions of former graduates.
- 8- Relevant committees in management such as scientific, QA.
- 9- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.
- D-<u>General and rehabilitative transferred</u> skills(other skills relevant to employability and personal development)
 - D1. Ability to carry out Independent study to take notes, to carry out background reading.
 - D2. Problem Solving based on understanding.
 - D3. Ability to learn and remember key facts
 - D4. Self-discipline and self-motivation

<u>10. Course Structure</u>							
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method		
1-6	12	A1 A2 A3 A4 B1 B2 B3 C1 C2 C3	New Trends in Computer Architecture and CPU's Performance Equations	Attract the student to the topics Guided Discovery Power Point Lecturing that summarizes the full text, in addition, a full text also available. Assignment Seminars Seminars Playing some Videos to stress and improve the student capability Do some practical examples that integrate the computer engineering subjects by Java programming language.	Motivation Quizzes Test Home work Peer assessment Oral assessment Discussion on Extra examples		

				Attract the	
				student to the	
				topics	
				Cuidad	
				Guided	
				Discovery	
				Power Point	
				Lecturing that	
				summarizes	
				the full text,	
				in addition, a	
				full text also	Motivation
				available.	0.1
		A1		Assignment	Quizzes
		A2		1 issignment	Test
		A3		Seminars	1.000
		A4		D1 '	Home work
7-12	12	B 1		Playing some	
/ 1=	12	B2		Videos to	Peer assessment
		B3		stress and	Oral assessment
		C1		improve the	
		C2		student	Discussion on
		C3		capability	Extra examples
				5	
				Do some	
				practical	
				examples that	
				integrate the	
				computer	
				engineering	
				subjects by	
				Java	
				programming	
				language.	
			Static and	Bando.	
			Dynamic	Group	
			Pipelining	Discussion	
		A1		Attract the	Motivation
		A2		student to the	
		A3		topics	Quizzes
13-20	16	A4		_	Test
		B1		Guided	
		B2 B3	Com and a law	Discovery	Home work
		B3	Superscalar		

		C1		Power Point	Peer assessment
		C2 C3		Lecturing that summarizes	Oral assessment
				the full text,	Discussion on
				in addition, a	Extra examples
				full text also	•
				available.	
				Assignment	
				Seminars	
				Playing some	
				Videos to	
				stress and	
				improve the	
				student	
				capability	
				Do some	
				practical	
				examples that	
				integrate the	
				computer engineering	
				subjects by	
				using Java	
				programming	
				language.	
				Group	
				Discussion	
				Attract the	Motivation
		A1		student to the	Quizzes
		A2		topics	Test
A3 A4 B1 B1			Guided		
	Duanah nuadiation	Discovery	Home work		
21-24	B2 B3		Branch prediction	Power Point	Peer assessment
		C1		Lecturing that	Oral assessment
		C2		summarizes	Discussion on
		C3		the full text,	Extra examples
				in addition, a	

25-288A1 A2 A3 A4 B1 B2 C1 C2 C3A1 A1 A2 A2 A3 A4 B1 B2 C1 C1 C2 C3A1 A1 A1 A2 A1 A2 A1 A2 A1 A2 A2 A3 A4 B1 B2 B3 C1 C1 C1 C2 C3A1 A1 A1 A2 A1 A2 A1 A2 A1 A2 A3 A4 B1 B2 B3 C1 C1 C1 C2 C3A1 A1 A1 A2 A3 A4 A1 A2 A3 A4 B1 B2 B3 C1 C1 C1 C2 C3A1 A1 A1 A2 A3 A4 B1 B2 B3 C1 C1 C1 C2 C3A1 A1 A1 A1 A2 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 B1 B2 B3 C1 C1 C2 C3A1 A1 A1 A2 A1 A1 A2 A1 A1 A1 A2 A1 A1 A1 A1 A2 A1 A1 A2 A1 A1 A2 A1 A1 A2 A1 A2 A1 A1 A2 A1 A1 A2 A1 A1 A2 A1 A1 A1 A1 A2 A1 A1 A2 A1 A1 A1 A1 A1 A1 A2 A1 <b< th=""><th></th><th></th><th></th><th></th><th>full text also available. Assignment Seminars Playing some Videos to stress and improve the student capability Do some practical examples that integrate the computer engineering subjects by</th><th></th></b<>					full text also available. Assignment Seminars Playing some Videos to stress and improve the student capability Do some practical examples that integrate the computer engineering subjects by	
	25-28	8	A2 A3 A4 B1 B2 B3 C1 C2	-	language. Group Discussion Attract the student to the topics Guided Discovery Power Point Lecturing that summarizes the full text, in addition, a full text also available.	QuizzesTestHome workPeer assessmentOral assessmentDiscussion on

				Playing some Videos to stress and improve the student capability Do some practical examples that integrate the computer engineering subjects by using Java programming language. Group Discussion	
29-31	6	A1 A2 A3 A4 B1 B2 B3 C1 C2 C3	Overview of Multi- Core, Many-Core Architecture and Parallel Processing	Attract the student to the topics Guided Discovery Power Point Lecturing that summarizes the full text, in addition, a full text also available. Assignment Seminars Playing some Videos to stress and improve the student capability	Motivation Quizzes Test Home work Peer assessment Oral assessment Discussion on Extra examples

				Do some practical examples that integrate the computer engineering subjects by using Java programming language. Group Discussion	
1-31	30	A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 C1 C2 C3 C4 C5 C6	Review, Seminars, Project Discussion on up-to-date topics in Computer Architecture	Attract the student to the topicsGuided DiscoveryPower Point Lecturing that summarizesthe full text, in addition, a full text also available.AssignmentSeminarsPlaying some Videos to stress and improve the student capabilityDo some practical examples that integrate the computer engineering	Quizzes Test Home work Peer report Group report Mini-project assignment Oral Discussion Practical examples Independent research.

subjects by	
using Java	
programming	
language	
Group	
Discussion	
Seminars	
Do a group	
based mini	
project by	
arranging	
with	
Operating	
System	
Libratory.	

11. Infrastructure

1. Books Required reading:

1. Computer Architecture a Quantitative Approach , Hennessey & Patterson, (3rd, 4th, & 5th editions), Elsevier, (2003, 2006, & 2012).

2. Computer Organization and Architecture Design for Performance, William Stalling, 9th edition, Pearson, 2013.

3. Computer Organization and Design: The Hardware/Software Interface Patterson & Hennessey, 4th edition, The Morgan Kaufmann Series in Computer Architecture and Design, 2008.

4. Microprocessor Architecture, Jean-Loup Baer, Cambridge University Press, 2010.

Structure Computer Organization, Tanenbaum,
 5th edition, Prentice Hall,2006.

 OpenCL Programming by Example, Banger & Bhattacharyya, PACKT, 2013.

Modern X86 Assembly Language
 Programming_ 32-bit, 64-bit, SSE, and AVX,
 Kusswurm, APRESS, December 2014.

8. The Java Tutorial, 6th Edition, Gallardo et. al., Addison-Wesley Professional, December 2014.

2. Main references (sources)

1. Computer Architecture a Quantitative Approach , Hennessey & Patterson, (3rd, 4th, & 5th editions), Elsevier, (2003, 2006, & 2012).

A- Recommended books and	Papers:		
A- Recommended books and references (scientific journals, reports).	 P. Trivedi and R. P. Tripathi, "Design & analysis of 16 bit RISC processor using low power pipelining," International Conference on Computing, Communication & Automation, Noida, 2015, pp. 1294-1297. B. W. Bomar, "Implementation of microprogrammed control in FPGAs," in <i>IEEE Transactions on Industrial Electronics</i>, vol. 49, no. 2, pp. 415-422, Apr 2002. J. L. Cruz, A. Gonzalez, M. Valero and N. P. Topham, "Multiple-banked register file architectures," Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201), Vancouver, BC, Canada, 2000, pp. 316-325. 		
B-Electronic references, Internet sites	Data Show. Internet. NetBeans IDE in the Lab. A Good Sounding system in the Lecture Hall. E-Learning Platform. Smart Board.		

12.The development of the curriculum plan

Continuous developing academic curricula in line with the scientific development.

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Embedded System

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Embedded Systems / COE 403
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1 st & 2 nd / Academic Year 2023 – 2022
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week Theory. 60 hrs. / 2 hrs. per week Lab.
7. Date of production/revision of this Specification	October-2022

8. Aims of the Course

As a brief description for the Goals and objectives, by the completion of the course the goal is:

To provide students with basic knowledge and skills in embedded systems design.

9. Learning Outcomes, Teaching , Learning and Assessment Method

A1. Design, program and evaluate systems in real time.

A2. Designing electronic circuits for the processing of information in communications and control systems.

A3. The ability to analyze, design, test and maintain complex embedded systems. A4. The ability to describe, validate and optimize embedded electronic systems in different areas of industrial application.

A5. The ability to evaluate hardware and software requirements for communication and control applications.

A6. The ability to solve industrial problems in control and automation systems.

A7. The ability to write reports on and present the systems designed.

A8. Understanding and applying the properties of sensors for designing electronic systems that integrate measurement and behavior in different areas of industrial production.

A9. Understanding and knowing how to use the methods and tools for the development and refinement of programs implemented on microprocessors, microcontrollers and DSPs.

A10. Understanding the most suitable processing of signaling and the associated hardware.

B. The skills goals special to the course

B1- Mathematical concepts and basic algorithms for describing and solving engineering problems.

B2 - Initial developments in Embedded systems majors.

B3 - developing the ability to conduct experiments and analyze data.

B5- Identifying, formulating and solving Internet Technology problems using modern engineering tools, techniques, and skills,

B6 - cooperation in group projects,

B7 - Developing written and verbal communication skills through presentations from the project results,

B8 - obtaining an appreciation for some of the ethical problems that exist in the practice of the profession.

10. Teaching and Learning Methods.

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.

- 4. Tests and Exams.
- 5. In-Class Questions and Discussions
- 6. Connection between Theory and Application.
- 7. Seminars.
- 8. In- and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment Methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

Grading Policy

1. Exams and Quizzes: There will be at least seven closed books and notes exams and quizzes during the academic year.

2. Oral and written assessment: The students are encouraged to participate their ideas to solve the problems during the lecture. The oral and written assessment.

3. Final Exam: - The final exam will be comprehensive, closed books and notes.

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

- 1-Tests, quizzes.
- 2- Activities.
- 3- Participate during lectures

Assessment methods

1- Study the conditions of former graduates.

- 2- Relevant committees in management such as scientific, QA.
- 3- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D- General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts

D4. Self-discipline and self-motivation

10. Course Structure

weak	Hours	ILOs	Topic title	Teaching	Assessment
				method	Method
Week	Hours	LOs	Topic title	Teaching method	Assessment Method
1	2 the.	Item 1 of	Review of microcontrollers	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	and Digital Signal	section 11	section 12
			Processors (DSP),		
			architecture,		
			peripheral modules.		
2	2 the.	Item 2 &	Embedded micro controller	From 1 to12 of	From 1 to 4 of
	2 exp.	3 of	cores (ARM, RISC, CISC,	section 11	section 12
		section 10	SOC), addressing modes.		
3	2 the.	Item 4 of	Interrupts structure,	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	hardware multiplier,	section 11	section 12
			pipelining.		
4	2 the.	Item 4 of	Hardware/Software co-	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	design. Architecture of	section 11	section 12
	_		embedded systems.		
5	2 the.	Item 1 to	Tutorials & Quiz	From 1 to12 of	From 1 to 4 of
	2 exp.	4 of		section 11	section 12
	_	section 10			
6	2 the.	Item 5 of	Assemblers, linkers and	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	loaders. Binary file formats	section 11	section 12
			for processor executable		
			files.		
7	2 the.	Item 5 of	Typical structure of timer-	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	interrupt driven programs.	section 11	section 12
8	2 the.	Item 5 of	GNU-GCC compiler	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	introduction, programming	section 11	section 12
			with Linux environment		
			and gnu debugging.		
9	2 the.	Item 5 of	GNU insight with step level		From 1 to 4 of
	2 exp.	section 10	trace debugging, make file	section 11	section 12
			interaction, building and		
			execution.		
10	2 the.	Item 6 of	Introduction to ARM	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	instruction set, addressing	section 11	section 12
			modes, operating modes		
			with		
			ARM core.		
11	2 the.	Item 6 of	ARM TDMI modes, ADC,	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	Timers, Interrupt structure.	section 11	section 12

12	2 the.	Item 7 of	Byte ordering (LE, BE),	From 1 to12 of	From 1 to 4 of
14		section 10	Thumb mode normal mode	section 11	section 12
	2 exp.	section to	instructions changes.	Section 11	Section 12
13	2 the.	Item 7 of	Pipeline utilization with all	From 1 to12 of	From 1 to 4 of
15	2 the. 2 exp.	section 10	register allocations.	section 11	section 12
14	2 exp. 2 the.	Item 7 of	Compare the ARM7,	From 1 to12 of	From 1 to 4 of
14	2 the. 2 exp.	section 10	ARM9, and ARM11 with	section 11	section 12
	2 cxp.	section to	new features additions.	Section 11	Section 12
			System design with ARM		
			processor.		
15	2 the.	Item 8 of	Interfacing switches,	From 1 to12 of	From 1 to 4 of
10	2 exp.	section 10	keyboards, LED's and	section 11	section 12
	2 onp.		LCD's.		
16	2 the.	Item 8 of	Transistors used for digital-	From 1 to12 of	From 1 to 4 of
10	2 exp.	section 10	controlled switches, digital-	section 11	section 12
	2 • Ap.		controlled relays, solenoids		
			& Quiz		
17	2 the.	Item 8 of	Interfacing of DC, AC and	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	stepper motors.	section 11	section 12
18	2 the.	Item 8 of	Analog interfacing and data	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	acquisition systems.	section 11	section 12
19	2 the.	Item 9 of	Real Time Operating	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	System Concepts, Kernel	section 11	section 12
	1		Structure.		
20	2 the.	Item 9 of	Critical Sections,	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	Multitasking, Task	section 11	section 12
	-		Management.		
21	2 the.	Item 9 of	Time Management,	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	Schedulers, Event Control	section 11	section 12
22	2 the.	Item 9 of	Blocks , Priorities ,	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	Deadlocks.	section 11	section 12
23	2 the.	From 5 to	Tutorial & Quiz	From 1 to12 of	From 1 to 4 of
	2 exp.	8 of		section 11	section 12
		section 10	~		
24	2 the.	Item 9 of	Synchronization,	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	Semaphore Management,	section 11	section 12
			Mutual		
25	2 4h -	Itom 0 - f	Exclusion.	Enom 1 4= 10 - f	Enore 1 to 4 - f
25	2 the.	Item 9 of	Message Mailbox	From 1 to12 of section 11	From 1 to 4 of section 12
	2 exp.	section 10	Management, Message	Section 11	Section 12
			Queue Management, Memory Management		
26	2 the.	Item 9 of	Tutorial & Quiz	From 1 to12 of	From 1 to 4 of
20	2 the. 2 exp.	section 10		section 11	section 12
	2 CAP.	section 10			5001101112
27	2 the.	Item 10 of	Applications of Embedded	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	Systems	section 11	section 12
28	2 the.	Item 10 of	Applications of Embedded	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	Systems	section 11	section 12
29	2 the.	Item 10 of	Applications of Embedded	From 1 to12 of	From 1 to 4 of
	2 exp.	section 10	Systems	section 11	section 12
30	2 the.	From 1 to	Tutorial & Quiz	From 1 to12 of	From 1 to 4 of
	2 exp.	10 of		section 11	section 12
	1	section 10			

11. Infrastructure	
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	 Embedded / Real-Time Systems: Concepts, Design & Programming - Dr. K.V. K. K. Prasad – dream tech Press, India. An Embedded Software Primer - David E. Simon - Pearson Education South Asia. Embedded Systems, Architecture, Programming and Design - Raj Kamal - Tata McGraw Hill. Embedded Realtime Systems Programming - Sriram V Iyer, Pankaj Gupta - Tata McGraw Hill. ARM System Developer's Guide Designing and Optimizing System Software - Andrew N. Sloss, Dominic Sysmes and Chris Wright - Elsevier Inc.
2. Main references (sources)	

A- Recommended books and references (scientific journals, reports).	 Papers 1 S. Edwards, L. Lavagno, E. A. Lee and A. Sangiovanni-Vincentelli, "Design of embedded systems: formal models, validation, and synthesis," in Proceedings of the IEEE, vol. 85, no. 3, pp. 366-390, March 1997. 2 Daler Rakhmatov and Sarma Vrudhula. 2003. Energy management for battery-powered embedded systems. ACM Trans. Embed. Comput. Syst. 2, 3 (August 2003), 277-324.
B-Electronic references, Internet sites	

12. The development of the curriculum plan Continuous developing academic curricula in line with the scientific development

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Computer Security

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Computer Security /COE 404
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1 st & 2 nd / Academic Year 2023 – 2022
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week Theory.
7. Date of production/revision of this Specification	October-2022
8. Aims of the Course	

1. Being aware of most security aspects and thoughts.

2. Exploring the most famous algorithms of Security systems

3- Learning the main parameters required for Security system design.

$9\cdot$ Learning Outcomes, Teaching , Learning and Assessment Method

The knowledge and skills expected to be attained by the student upon completion of the course are listed below:

A. Knowledge and Understanding:

A1. Understanding and dealing with OSI security architecture.

A2. Design and analyze a basic model of classical encryption techniques.

A3. Evaluate the security models

A4. Diagnose the main weak point in security systems.

A5. Analyze an advanced encryption techniques.

B1. encryption system design

B2. ability to analyze a basic model of classical encryption techniques.

C. Thinking Skills

C1. thinking of secure communication and jobs.

C2. discover new encryption techniques

D. Personal Development

D1. become secure person.

D2. determine optimal secure model.

10. Teaching and Learning Methods.

1. Lectures.

2. Tutorials.

3. Homework and Assignments.

4. Tests and Exams.

5. In-Class Questions and Discussions

6. Connection between Theory and Application.

7. Seminars.

8. In- and Out-Class oral conservations.

9. Reports, Presentations, and Posters.

Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

1-Tests, quizzes.

2- Activities.

3- Participate during lectures

Assessment methods

- 4- Study the conditions of former graduates.
- 5- Relevant committees in management such as scientific, QA.
- 6- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D- General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts

D4. Self-discipline and self-motivation

10. Course Structure

weak	Hours	ILOs	Topic title	Teaching method	Assessment Method
week	Hours	Los	Topic title	Teaching method	Assessment Method
1	3 the.	From A1- A5	Introduction to Security Trends, OSI Architecture	From 1 to12 of T-Methods	From 1 to4 of A-Methods
2	3 the.	From A1- A5	A Model of network security	From 1 to12 of T-Methods	From 1 to4 of A-Methods
3	3 the.	From A1- A5	Classical Encryption techniques	From 1 to12 of T-Methods	From 1 to4 of A-Methods
4	3 the.	From A1- A5	Symmetric Key Cryptography	From 1 to12 of T-Methods	From 1 to4 of A-Methods
5	3 the.	From A1- A5	DES	From 1 to12 of T-Methods	From 1 to4 of A-Methods
6	3 the.	From A1- A5	DES	From 1 to12 of T-Methods	From 1 to4 of A-Methods
7	3 the.	From A1- A5	Finite Field	From 1 to12 of T-Methods	From 1 to4 of A-Methods
8	3 the.	From A1- A5	AES	From 1 to12 of T-Methods	From 1 to4 of A-Methods
9	3 the.	From A1- A5	Modes of Operation	From 1 to12 of T-Methods	From 1 to4 of A-Methods
10	3 the.	From A1- A5	Message Authentication	From 1 to12 of T-Methods	From 1 to4 of A-Methods
11	3 the.	From A1- A5	Public Key Cryptography	From 1 to12 of T-Methods	From 1 to4 of A-Methods
12	3 the.	From A1- A5	Public Key Cryptography	From 1 to12 of T-Methods	From 1 to4 of A-Methods
13	3 the.	From A1- A5	Digital Signature	From 1 to12 of T-Methods	From 1 to4 of A-Methods
14	3 the.	From A1- A5	User Authentication	From 1 to12 of T-Methods	From 1 to4 of A-Methods
15	3 the.	From A1- A5	User Authentication	From 1 to12 of T-Methods	From 1 to4 of A-Methods
16	3 the.	From A1- A5	Access Control	From 1 to12 of T-Methods	From 1 to4 of A-Methods
17	3 the.	From A1- A5	Access Control	From 1 to12 of T-Methods	From 1 to4 of A-Methods
18	3 the.	From A1- A5	Malware	From 1 to12 of T-Methods	From 1 to4 of A-Methods
19	3 the.	From A1- A5	Malware	From 1 to12 of T-Methods	From 1 to4 of A-Methods
20	3, the.	From A1- A5	Denial of Service Attacks	From 1 to12 of T-Methods	From 1 to4 of A-Methods
21	S3 the.	From A1- A5	Denial of Service Attacks	From 1 to12 of T-Methods	From 1 to4 of A-Methods
22	3 the.	From A1- A5	Firewall	From 1 to12 of T-Methods	From 1 to4 of A-Methods
23	3 the.	From A1- A5	Firewall	From 1 to12 of T-Methods	From 1 to4 of A-Methods
24	3 the.	From A1- A5	Intrusion Detection System	From 1 to12 of T-Methods	From 1 to4 of A-Methods

25	3 the.	From A1- A5	Trusted Computing	From 1 to12 of T-Methods	From 1 to4 of A-Methods
26	3 the.	From A1- A5	Trusted Computing	From 1 to12 of T-Methods	From 1 to4 of A-Methods
27	3 the.	From A1- A5	Web Security	From 1 to12 of T-Methods	From 1 to4 of A-Methods
28	3 the.	From A1- A5	Web Security	From 1 to12 of T-Methods	From 1 to4 of A-Methods
29	3 the.	From A1- A5	Internet Security	From 1 to12 of T-Methods	From 1 to4 of A-Methods
30	3 the.	From A1- A5	Internet Security	From 1 to12 of T-Methods	From 1 to4 of A-Methods

11. Infrastructure

Required reading:

- · CORE TEXTS
- · COURSE MATERIALS
- · OTHER

 Computer Security, 3rd edition, William stalling, 2015. Cryptography and Network Security, 7th edition, William stalling, 2017. Applied Cryptography, 2nd edition, Bruc Schneier, 1996. 	

 paper1: van der Veen, V.; dutt-Sharma, N.; Cavallaro, L., and Bos, H. "Memory errors: the past, the present, and the future." in Proceedings of the 15th international conference on Research in Attacks, Intrusions, and Defenses (RAID'12), Springer-Verlag, pp. 86–106, 2012 Paper2: Felten, E. "Understanding Trusted Computing: Will Its Benefits Outweigh its Drawbacks?" <i>IEEE Security and Privacy</i>, May/June 2003. Paper3: Cheng, T., et al. "Evasion Techniques: Sneaking through Your Intrusion Detection/Prevention Systems." <i>IEEE Communications Surveys & Tutorials</i>, Fourth Quarter 2012.

12.The development of the curriculum plan Continuous developing academic curricula in line with the scientific development

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Artificial Intelligent and Robotics

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Artificial Intelligent and Robotics \COE 405
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1 st & 2 nd / Academic Year 2023 – 2022
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week Theory.
7. Date of production/revision of this Specification	October-2022

- 8. Aims of the Course
- 1. This subject has been prepared as a comprehensive for a first study of control engineering.
- 2. also helps the students to understand the artificial intelligent and robotics system for variety of engineering applications
- 3. covers the artificial intelligent and robotics system

9. Learning Outcomes, Teaching , Learning and Assessment Method

A. Knowledge and Understanding

A1.- Learn the basic fundamentals of Artificial Intelligent

In the field, which encompasses logic, probability, and continuous mathematics; perception, reasoning, learning, and action; and everything from microelectronic devices to robotic explorers.

A2.L Define AI as the study of agents that receive percepts from the environment and perform actions

A3. We explain the role of learning as extending the reach of the designer into unknown environments.

A4.Learn the Robotics system

A5. Learn the kinematics of Robotics

A6 . Learn the path planning of robotics

B1. Understand the AI theory

B2. Find the learning algorithms

B3: study the Artificial neural networks

B4.How to compute all the learning algorithms

B5.Compute the path planning of robotics based on AI C. Thinking Skills

10. Teaching and Learning Methods.

1. Lectures.

- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions

6. Connection between Theory and Application.

7. Seminars.

- 8. In- and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment Methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

- 1-Tests, quizzes.
- 2- Activities.
- 3- Participate during lectures

Assessment methods

- 7- Study the conditions of former graduates.
- 8- Relevant committees in management such as scientific, QA.
- 9- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D- General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts

D4. Self-discipline and self-motivation

<u>10. Course Structure</u>					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1-2	2 theory 1 tutorial	A1	Introduction What Is AI? The Foundations of Artificial Intelligence The History of Artificial Intelligence The State of the Art	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
3-4	2 theory 1 tutorial	A2	Intelligent Agents Agents and Environments. Good Behavior: The Concept of Rationality. The Nature of Environments. The Structure of Agents	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
5	2 theory 1 tutorial	A2	Learning Learning from Examples Forms of Learning .	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
6	2 theory 1 tutorial	A1, A2	Supervised Learning Learning Decision Trees Evaluating and Choosing the Best Hypothesis.	From 1 to 8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
7	2 theory 1 tutorial	A3	The Theory of Learning Regression and Classification with Linear Models.	From 1 to 8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
8-10	2 theory 1 tutorial	A4, A5	Artificial Neural Networks Nonparametric Models	From 1 to 8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
11-14	2 theory 1 tutorial	A6	Support Vector Machines Ensemble Learning	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method

15-18	2 theory 1 tutorial 2 labs.	A6	Practical Machine Learning	From 1 to 8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
19	2 theory 1 tutorial	A5,A6	Learning Probabilistic Models	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
20	2 theory 1 tutorial	A1	Reinforcement Learning	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
21	2 theory 1 tutorial	A1	Robotics Introduction	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
22	2 theory 1 tutorial	A1	Robot Hardware	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
23	2 theory 1 tutorial	A5	Robotic Perception	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
24	2 theory 1 tutorial	A1,A5	Planning to Move	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
25	2 theory 1 tutorial	A1,A5	Planning Uncertain Movements	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
26-28	2 theory 1 tutorial	A1,A5	Moving	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
26-28	2 theory 1 tutorial	A1,A5	Robotic Software Architectures	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method
29-30	2 theory 1 tutorial	A1,A5	Application Domain	From 1 to8 of Teaching and Learning Methods	From 1 to3 of Assessment Method

11. Infrastructure	
Required reading:	
· CORE TEXTS	
· COURSE MATERIALS	
• OTHER	 Stuart J. Russell and Peter Norvig "Artificial Intelligence: A Modern Approach", 2010 by Pearson Education, Inc., Third Edition. M.W.Spong , S. Hutchinson and M. Vidyasagar, "Robot Modeling and Control", 2006. Kevin M. Lynch and Frank C. Park, "Modern Robotics Mechanics, Planning, And Control", 2017.
2. Main references (sources)	JACEK M. ZURADA, "Introduction to Artificial Neural Systems", 1992.

A- Recommended books and references (scientific journals, reports).	
B-Electronic references, Internet sites	

12. The development of the curriculum plan Continuous developing academic curricula in line with the scientific development

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Computer Vision and Pattern Recognition

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmed specification.

1. Teaching Institution	College of Engineering University of Baghdad
2. University Department/Centre	Computer Engineering Department (COED)
3. Course title/code	Computer Vision and Pattern Recognition / COE 406
4. Modes of Attendance offered	Annual System; There is only one mode of delivery, which is a "Day Program". The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.
5. Semester/Year	1 st & 2 nd / Academic Year 2023 – 2022
6. Number of hours tuition (total)	90 hrs. / 3 hrs. per week Theory.
7. Date of production/revision of this Specification	October-2022

8. Aims of the Course

What are the knowledge and skills expected to be attained by the student upon completion of the course (brief description)?

- 1. Present, as clearly and completely as possible, the main principles of modern computer vision systems equipped with pattern recognition capabilities.
- 2. Provide a thorough discussion of the fundamentals of computer vision basic algorithms and with emphasis to the analysis and implementation of certain algorithms from the literature.
- 3. The course mainly will study: relation between computer vision and human vision system, color spaces and their relations, multi-level features, feature extraction and matching, optical flow, machine learning, and object detection.

 $9\cdot$ Learning Outcomes, Teaching , Learning and Assessment Method

A. Knowledge and Understanding:

- A1. Analyze scientific research and describe computer vision and pattern recognition/classification algorithms.
- A2. Acquire data from a camera source.
- A3. Process the acquired image/video data.
- A4. Extract discriminative features from the image/video data.
- A5. Apply pattern recognition/classification algorithms in order to distinguish different patterns.
- A6. Build a full computer vision system.
- A7. Analyze the performance of a full computer vision system.
- B. Subject-specific skills
 - B1. Realizing the relationship between computer vision and human visual system.
 - B2. Understanding computer vision and pattern recognition algorithms.
 - B3. Design and modeling a computer vision and pattern recognition algorithm.
- C. Thinking Skills

- C1. Understanding the relationship between computer vision algorithm and human visual system.
- C2. Understanding features including feature extraction and feature matching
- C3. Understanding visual classification, tracking, and retrievals.

D. General and Transferable Skills (other skills relevant to employability and personal development)

- D1. Thinking of computer vision system as a system that is used to replace human visual system in computer system.
- D2. Help students to design and build their computer vision algorithms.
- D3. Design a computer vision and pattern recognition algorithm for embedded systems.
- D4. Developing computer vision algorithms.

Design and develop algorithms for controlling devices interfaced to visual devices.

Teaching and Learning Methods.

- 1. Lectures.
- 2. Tutorials.
- 3. Homework and Assignments.
- 4. Tests and Exams.
- 5. In-Class Questions and Discussions
- 6. Connection between Theory and Application.
- 7. Seminars.
- 8. In- and Out-Class oral conservations.
- 9. Reports, Presentations, and Posters.

Assessment Methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

Grading Policy

1. Exams and Quizzes: There will be at least seven closed books and notes exams and quizzes during the academic year.

2. Oral and written assessment: The students are encouraged to participate their ideas to solve the problems during the lecture. The oral and written assessment.

3. Final Exam: - The final exam will be comprehensive, closed books and notes.

C. Affective and value goals

C1-Student collaborative evaluation data is obtained from students at the end of the cooperative experiment.

C2- Conducting a survey for each year to determine the extent to which students achieve the desired results

C3- The evaluation is based on student data during the questionnaire distributed to the educational students and academic courses.

Teaching and Learning Methods

1-Tests, quizzes.

- 2- Activities.
- 3- Participate during lectures

Assessment methods

- 10- Study the conditions of former graduates.
- 11- Relevant committees in management such as scientific, QA.
- 12- The employee attitudes of our graduates, for example, workplace and job title, will be tracked each year.

D- <u>General and rehabilitative transferred</u> skills(other skills relevant to employability and personal development)

D1. Ability to carry out Independent study to take notes, to carry out background reading.

D2. Problem Solving based on understanding.

D3. Ability to learn and remember key facts

D4. Self-discipline and self-motivation

10. Course Structure

W 1-	Hours	Los		Teaching	Assessment
Week			Topic title	method	Method
	2 the.	Item A1		From 1 to	From 1 to 4
1	1 tut.		Introduction to Computer Vision and	10 of	of
			Pattern Recognition.	T-methods	A-methods
	4 the.	Items A1		From 1 to	From 1 to 4
2-3	2 tut.		Human Vision, Color Spaces and Transforms	10 of	of
				T-methods	A-methods
	4 the.	Item A2		From 1 to	From 1 to 4
3-4	2 tut.		Image coordinates and resizing	10 of	of
				T-methods	A-methods
	6 the.	Item A3		From 1 to	From 1 to 4
5-8	3 tut.		Filters and convolutions	10 of	of
	4.1	T. 10		T-methods	A-methods
0.10	4 the.	Item A3		From 1 to	From 1 to 4
9-10	2 tut.		Harris detector and matching	10 of	of
	C 11	T/ A /		T-methods	A-methods
11-13	6 the.	Item A4		From 1 to 10 of	From 1 to 4 of
11-13	3 tut.		Matching, RANSAC, HOG, and SIFT	T-methods	OI A-methods
	4 the.	Item A4		From 1 to	From 1 to 4
13-14	4 the. 2 tut.	Item A4	Optical Flow	10 of	of
13-14	2 tut.		Optical Flow	T-methods	A-methods
	2 the.	Item A5		From 1 to	From 1 to 4
15	1 tut.	10111715	Machine Learning	10 of	of
10	1 tut.		Machine Learning	T-methods	A-methods
	2 the.	Item A5		From 1 to	From 1 to 4
16	1 tut.		Machine Learning for Computer Vision		of
				T-methods	A-methods
	4 the.	Item A4-		From 1 to	From 1 to 4
17-18	2 tut.	A5	Feature extraction	10 of	of
				T-methods	A-methods
	4 the.	Item A5		From 1 to	From 1 to 4
19-20	2 tut.		Neural Networks	10 of	of
				T-methods	A-methods
	4 the.	Item A5		From 1 to	From 1 to 4
21-22	2 tut.		Support Vector Machine	10 of	of
				T-methods	A-methods
	2 the.	Item A5	Introduction to Convolutional Neural	From 1 to	From 1 to 4
23	1 tut.		Networks	10 of	of
				T-methods	A-methods
	4 the.	Item A5		From 1 to	From 1 to 4
24-25	2 tut.		Object Detection	10 of	of
		-		T-methods	A-methods
26-27	4 the.	Item A4-	Segmentation	From 1 to	From 1 to 4
20 21	2 tut.	A5	Segmentation	10 of	of

				T-methods	A-methods
	4 the.	Item A6		From 1 to	From 1 to 4
27-28	2 tut.		Face detection and recognition	10 of	of
				T-methods	A-methods
	4 the.	Item A6-		From 1 to	From 1 to 4
29-30	2 tut.	A7	Seminars	10 of	of
				T-methods	A-methods

11. Infrastructure	
Required reading:	
· CORE TEXTS	
· COURSE MATERIALS	
• OTHER	 <i>References:</i> 4- Feature extraction image processing for computer vision, Nixon, Mark S and Aguado, Alberto S, 2012, Academic Press. 5- Color image processing: methods and applications, Lukac, Rastislav and Plataniotis, Konstantinos N, 2006, CRC press.
2. Main references (sources)	Computer Vision: Algorithms and Applications Rick Szeliski, 2010.

A- Recommended books and references (scientific journals, reports).	 Papers: 4- Abdulhussain, Sadiq H. and Ramli, Abd Rahman and Mahmmod, Bahseera M and Al-Haddad, S A R and Jassim, Wissam A. "Image Edge Detection Operators based on Orthogonal Polynomials." International Journal of Image and Data Fusion 8.3 (2017), 293-308. 5- Mahmmod, Basheera M. and bin Ramli, Abd Rahman and Abdulhussain, Sadiq H and Al- Haddad, Syed Abdul Rahman and Jassim, Wissam A. "Signal compression and enhancement using a new orthogonal- polynomial-based discrete transform." IET Signal Processing 12.1(2018): 129-142. 6- Lowe, David G. "Distinctive image features from scale-invariant keypoints." International journal of computer vision 60.2 (2004): 91-110.
B-Electronic references, Internet	DataShow. Internet. A Good Sounding system in the Lecture Hall. SmartBoard

12. The development of the curriculum plan Continuous developing academic curricula in line with the scientific development