قسم هندسة الموارد المائية

نبذة مختصرة عن قسم هندسة الموارد المائية
تأسس القسم بناء على قرار الهيئة العلمية والمصادق عليه من مجلس الجامعة بجلسته الثامنة والاربعين في 10/8/1969. وقد رشح الاستاذ الدكتور نجيب سليمان خروفه وانتخب  من مجلس الكلية بالاجماع ليكون رئيساً للقسم. ومع بداية القسم  اتخذت الخطوات اللازمة لبدء التدريسات من خلال تسمية ملاك الهيئة التدريسية وتحديد المناهج ، اضافة الى تهيئة الكتب الدراسية ليشرع بالتدريس الفعلي في القسم من خلال العام الدراسي  1970-1971.
لقد شهد القسم جملة من التغيرات ، ويمكن اجمالها بالاتي:
 في عام 1970 تأسس القسم وكان اسمه انذاك قسم الهندسة الزراعية.
 في عام 1975 تغيير اسم القسم الى قسم هندسة الري والمكائن الزراعية.
 في عام 1976 استحدثت دراسة الماجستير.
 في عام 1980 استحدثت دراسة الدكتوراه.
 في عام 1981 تغيير اسم القسم الى قسم هندسة الري والبزل.
 في عام 2003 تغيير اسم القسم الى الاسم الحالي وهو قسم هندسة الموارد المائية.
لقد تم وضع المناهج الدراسية لقسم هندسة الموارد المائية بكلية الهندسة، بعد دراسة مناهج خمس جامعات عالمية وتم استخلاص النسب المئوية للفروع المختلفة التي تدرس في تلك الجامعات ، وعدلت بعض المتطلبات لتلائم ظروف العراق ، من ثم تحضير منهج لاربع سنوات بموجب القواعد التي تسير عليها كلية الهندسة حالياً.

الدورات والندوات للعام الدراسي 2019-2020

تعنوان النشاط المقترحموعد الانعقاد  مدة الانعقادمكان الانعقادالجهة المنظمةجهات مشاركة ان وجدتالبريد الالكتروني
يومشهرسنة

تقييم اداء التدريسيين -2018-2019

الخطة البحثية 2018-2019

الخطة البحثية المعلنة لقسم الهندسة المدنية 2019- 2020 ((اضغط هنا))

نشاطات القسم

مناقشة رسالة الماجستير للطالبة ( عطاء علي فرحان) في قسم هندسة الموارد المائية
تمت مناقشة رسالة الماجستير للطالبة ( عطاء علي فرحان) في قسم هندسة الموارد المائية  وبأشراف  ( أ.م.د. باسم شبع عبد) في يوم الاربعاء المصادف 30/6/2021 في قاعة الدكتور نجيب خروفة في قسم هندسة الموارد المائية عن رسالتها الموسومة: تقدير الجريان السطحي لبحر النجف و قد تألفت لجنة المناقشة من الاساتذة الافاضل المدرجة اسماؤهم ادناه:– أ.م.د. حيدر عبدالامير خضير/ جامعة بغداد / قسم هندسة الموارد المائية / رئيساً.– أ.م.د. ميسون بشير عبد / جامعة بغداد / قسم هندسة الموارد المائية/ عضواً.– م.د. رياض جاسم محمد / جامعة كربلاء / قسم هندسة بناء وانشاءات/ عضواً.– أ.م.د باسم شبع عبد / جامعة بغداد/ قسم هندسة الموارد المائية / مشرفا.تهدف الدراسة الحالية إلى إجراء دراسة هيدرولوجية تنبؤية لمنطقة بحر النجف من خلال تطوير نموذج رقمي لمحاكاة الجريان السطحي (خصائص التدفق السطحي) باستخدام برنامج     SWATو تقدير وتوقع الكمية المحتملة للجريان السطحي الذي يمكن ايصالها إلى بحر النجف من الأودية القريبة الرئيسية ومناطق مستجمعات المياه وهي وادي  الخَر وشعيب الرحيماوي والمالح والتحقق من احتمالية حدوث الفيضانات بسبب ارتفاع معدلات التدفق الوافدة إلى منطقة الدراسة ، وتحديد المواقع المهمة المتوقعة ستنغمر .حيث تم اقتراح ثلاثة سيناريوهات افتراضية لدراسة الظروف الهيدرولوجية لمنطقة بحر النجف .أولاً، بفرض عمق تساقط يبلغ 90 ملم، فإن كمية الأمطار هذه ستودي الى رفع منسوب مياه الى 16 متر فوق مستوى سطح البحر في البحيرة، وستضمن ملىء البحيرة المحاطة بداخل (بحر النجف) والتي تبلغ مساحتها 49 كيلومترًا مربعً بالمياه.ثانيًا ، إذا زاد معدل التساقط إلى 95 ملم ، فسيؤدي ذلك إلى ارتفاع منسوب المياه إلى 18 مترًا فوق مستوى سطح البحر في البحيرة، وستتجاوز المياه حدود البحيرة وتملأ مساحة 251 كيلومترًا مربعًا الذي يمثل المنطقة بأكملها.أخيرًا إذا كانت كمية الأمطار 100 ملم أو أكثر سيرتفع منسوب المياه في منطقة الدراسة بنسبة كبيرة ويصل إلى22 متر فوق مستوى سطح البحر في البحيرة، ويؤدي إلى اغراق جزء من مدينة النجف الأثرية بالمياه.
مناقشة طالب الماجستير/ طاسين صالح حسين   من قسم هندسة الموارد المائية
  تم مناقشة رسالة الماجستير للطالب / طاسين صالح حسين            في قسم هندسة الموارد المائية عن البحث الموسوم تقييم وتطوير منظومة تحكم انهار (حلة-ديوانية-دغارة)                                                  في يوم الثلاثاء  الموافق   6 - 7 - 2021 وبأشراف   أ.م.د حيدر عبد الامير الثامري وقد تشكلت لجنة  المناقشة  من السادة
  • أ.د رياض زهير جويعد جامعة بغداد/ كلية الهندسة/ رئيسا
  • أ.م.د باسم شبع عبد جامعة بغداد/ كلية الهندسة/ عضوا
  • أ.م.د حسام هادي علوان جامعة كربلاء/ كلية الهندسة/ عضوا
  • أ.م.د. حيدر عبد الامير الثامري جامعة بغداد/ كلية الهندسة/ مشرفا
 تتمثل الأهداف الرئيسية لهذه الدراسة في تحديد القيمة المناسبة لمعاملات مانينغ لشط الدغارة وشط الديوانية وتحويلة شط الديوانية وكذلك دراسة استيعابية المنظومة تحت الظروف الحالية واقتراح التطويرات المناسبةتم إجراء سلسلة من القياسات الميدانية لجمع جميع البيانات اللازمة في اعداد النموذج الهيدروليكي لمنظومة انهار )حلة – ديوانية – دغارة(. تضمن العمل الحقلي قياس التصريف والمنسوب ثلاث مجموعات في ذنائب شط الحلة وأربع مجموعات في شط الدغارة وأربع مجموعات في شط الديوانية وثلاث مجموعات في قناة تحويلة شط الديوانية. تم تطوير نموذج هيدروليكي احادي البعد باستخدام برنامج HEC- RAS  لمحاكاة الجريان في منظومة أنهار )حلة - ديوانية - دغارة( ضمن منطقة الدراسة. تم اقتراح تطويرات لزيادة استيعابية المنظومة وصولا للتصاريف القصوى والتي تتطلبها المشاريع الاروائية وتحقيقا لمتطلبات الدراسة لاستراتيجية لموارد المياه والأراضي في العراق، 2014 المعدة من قبل وزارة الموارد المائية. تمت محاكاة عشر سيناريوهات لدراسة استيعابية المنظومة تحت الظروف الحالية ضمن منطقة الدراسة. كما تم تنفيذ عشرة سيناريوهات لتطوير منظومة انهار )حلة – ديوانية – دغارة( وتحسين قدرة المنظومة في استيعاب التصاريف التصميمية. وجد أن معاملات مانينغ لشط الدغارة وشط الديوانية وقناة التحويلة هي 0.023,0.022 و 0.018 على التوالي من خلال المعايرة والتحقق باستخدام البيانات الحقلية المقاسة. أظهرت نتائج أن اقصى تصريف لشط الحلة وشط الدغارة وشط الديوانية وقناة التحويلة والممكن امراره حاليا هو 200 و 50 و 60 و 22 م /3ثا على التوالي. كما أن الناظم القاطع لشط الدغارة عند المحطة000+64  كم غير قادر على امرار تصريف أكثر من 5 م /3ثا. أن إجمالي التصريف في شط الديوانية مؤخر مصب قناة التحويلة كواقع حال يجب أن يكون أقل من45 م /3ثا لتجنب تأثير.(backwater curve) تضمنت عملية التطوير تعديل المقاطع العرضية من خلال تهذيب النهر ورفع منسوب الاكتاف في مواقع مختلفة. اضافة لما تقدم فقد بينت نتائج التطويرات أن استيعابية تصريف شط الحلة وشط الدغارة وشط الديوانية وقناة التحويلة ستصل إلى 303 و 75 و 96.2 و 45.5 م /3ثا على التوالي. من ناحية أخرى زادت السعة الحالية لشط الدغارة من 50 م /3ثا الى 75 م /3ثا. 
مناقشة رسالة ماجستير في قسم هندسة الموارد المائية
تمت مناقشة رسالة الماجستير للطالبة ( هاجر ماجد غالي) في قسم هندسة الموارد المائية تحت اشراف الاستاذ ( أ.د. رياض زهير جويعد) في يوم الاثنين المصادف 31/5/2021 في قاعة الدكتور نجيب خروفة في قسم هندسة الموارد المائية عن رسالتها الموسومة:” Investigating Suggested Alternatives of Flood Escape of Hemrin Dam “و قد تألفت لجنة المناقشة من الاساتذة الافاضل المدرجة اسماؤهم ادناه:- أ.د. رعد هوبي ارزوقي / جامعة تكريت/ قسم الهندسة البيئية/ رئيساً.- أ.م.د. باسم شبع عبد/ جامعة بغداد/ قسم هندسة الموارد المائية/ عضواً.- م.د. امين محمد صالح امين/ جامعة بغداد/ قسم هندسة الموارد المائية/ عضواً. يهدف هذا البحث الى حل مشكلة الفيضان التي تحدث خلال موسم الفيضان في محافظة ديالى وذلك عن طريق اقتراح ثلاث بدائل لمهارب فيضانية, الاول من بحيرة حمرين و الثاني والثالث من نهر ديالى, وذلك لتمرير الموجة الفيضانية خلال المهارب المقترحة, حيث تمت تصميم و دراسة هذه المهارب الثلاثة هيدروليكيا وبأستخدام برنامج   HEC-RAS بعد المناقشات العلمية من قبل اعضاء لجنة المناقشة لموضوع الرسالة تم قبول الرسالة. وبدورنا نبارك للطالب وعائلته الكريمة هذا الجهد الذي تم بذله لتتويج الرسالة بالنجاح. وكذلك نبارك للأساتذة الأفاضل لما بذلوه من جهد كبيرلنقل الرسالة الى مستويات اعلى وافضل بما يليق بمستوى كلية الهندسة في جامعة بغداد. 
مناقشة مشاريع التخرج لطلبة المرحلة الرابعة في قسم هندسة الموارد المائية

تم في قسم هندسة الموارد المائية مناقشة مشاريع التخرج لطلبة المرحلة الرابعة وتناولت المشاريع مواضيع متتعددة منها تصاميم لسدود ومنشاة هيدروليكية وتصاميم لمنظومات ري ومحطات معالجة باستخدام احدث البرامج واشرف اساتذة القسم وكانت مستوى الاداء للطلبة جيد جداً مما يدل على متابعة والتزام مشرفي المشاريع وتواصلهم مع الطلبة  وقيما يلي قائمة باسماء المشاريع والمشرفين والطلبة

أسماء الطلاباسم التدريسياسم المشروعت
زهراء يوسف باقر مرادنبأ قاسم فوزي حسنأ.د. رياض زهير الزبيدي م.م. أيمان عبدالسلامDistribution network of water treatment plant1
ليث محمد عبد الأمير رسل مظهر حسوني جويدأ.د. ثامر أحمد محمدDesign of Concrete Gravity Dam by Considering Seismic Effect   2
ضرغام حيدر عبد الحميد رسل مخلص حسين جبارةا.م.د.حيدر عبدالامير الثامريتصميم شبكة بزل لمشروع اروائي3
محمد عبد الله حميد عبد اللهحيدر جاسم صلال إبراهيمكرار أحمد قاسم عطيةأ.م.د. باسم شبع عبدم.م. رسل أحسان عبدالرضاHydraulic design of culvert by HEC-RAS4
صائب سعد إبراهيم رجبسعد طه مخلف فجرأ.م.د.ميسون بشير عبدم.م. زينب عبدالاله غضبان تصميم سد ترابي في المناطق شديدة الانحدار بأستخدام البرنامج الحاسوبي  Geo-Slope5
رسل أياد نايف مهديابرار محمد عبد العالي طاهرأ.م.جنان نعمة حمزةتصميم محطة معالجة لمياه الصرف الصحي بأستخدام طريقة  Trickling filter6
تبارك علي حمزة عبدمريم حيدرصالح عبد الحسنأ.م.ميسم ثامر مطشرتصميم برنامج لحساب اقصى حمل لتحمل التربة7
سديم فريد عبد العزيز جار اللهنور الدين احمد حماد عوادم.د.أبراهيم فاضل محسنDesign a Potable Water Network in Residential Section8
أيه خالد محمودملاك رزاق هميم لازمم.د. حيدر قيس مجيدStructural Design of Reinforced Concrete Bridge piers9
علي شاكر ناجي دخيلرفل فراس يحيى حميدم.د زهير كاظم جهان كيرDesign of retaining wall including wet and dry condition of the soil under Static loading effect10
عدنان صلاح يونس دهموشسرى محمد عيال هزاعم.د. علي عمران محسنDesign of Wastewater Treatment Plant (WWTP)11
نور الحسين رحيم خضيرشيماء علي محمد سعيد امينمحمد قاسم علي دعدوشم.د. أمين محمد صالحCONCRETE DESIGN OF SLAB AND DECK GIRDER BRIDGES12
طه بلال نصيف محمدنبأ عبد الأمير حمود تريجيم.د. محمد راشد ظاهرResidential sewerage networks design13
أسماء الطلاباسم التدريسياسم المشروعت
ايناس عبد علي عودة جبرسارة عدنان جاسم خليفةم.م.آلاء عبدالهادي عباسGeographic Information System and Remote Sensing for Water Resources Planning and Management in Iraq14
زهراء اركان شاكرمحمد قاسم نفل سمير     م.م.حسين فاضل حسينDesign of a Reinforced Concrete Deck-Girder Bridge15
أحمد يحيى عبد كاطععباس علي جاسم مطيلجم.م.علي خيري أبراهيمتصميم قناة فرعية مع بعض المنشات الواقعة عليها  16
عذراء سلمان مجبل عبدجنان صباح حسب اللهم.م. فاطمة سعدون مصحبتصميم منظومة ري بالرش  17

 الدكتور زهير كاظم جهان كير يلقي بحث في المؤتمر الدولي الثاني للهندسة وعلوم المواد
ألقى الدكتور زهير كاظم جهان كير  بحثه في المؤتمر الدولي الثاني للهندسة وعلوم المواد المنعقدة في الجامعة التكنولوجيا في بغداد برعاية أربعة مؤسسات أكاديمية  عالمية من العراق و ماليزيا و اليابان و أستراليا  . حيث ستنشر بحوث المؤتمرفي مجلة علمية ضمن مستوعبات سكوبس بمعامل سايت سكور 0.6   ودار نشر العهد الاميريكي للفيزياء AIP (AIP conference proceeding) معتمدة من قبل وزارة التعليم العالي والبحث العلمي. حيث ان عنوان ورقته البحثية الموسومة " تأثير صلابة الأساس على الرمال تحت التحميل الثابت". اذ شارك الدكتور زهير كاظم جهان كير  التدريسي في قسم هندسة الموارد المائية في كلية الهندسة بجامعة بغداد بورقة بحثية في المؤتمر الدولي الثاني للهندسة وعلوم المواد المنعقدة في الجامعة التكنولوجيا في بغداد للفترة من 25-26/9/2019 برعاية أربعة مؤسسات أكاديمية  عالمية من العراق و ماليزيا و اليابان و أستراليا .حيث ستنشر بحوث المؤتمرفي مجلة علمية ضمن مستوعبات سكوبس العالمية  ودار نشر العهد الاميريكي للفيزياء  AIP (AIP conference proceeding) معتمدة من قبل وزارة التعليم العالي والبحث العلمي. حيث ان عنوان ورقته البحثية الموسومة " تأثير صلابة الأساس في الرمال تحت التحميل الثابت" والتي تتلخص بمايلي: الخلاصة: في تطبيقات الهندسة الجيوتقنية، لم يتم بعد وضع مفاهيم دقيقة حول تأثيرات الصلابة النسبية للاسس (قاعدة الاساس+ التربة) على قدرتها على قابلية التحمل والنزول. يستخدم البناء الحديث للاسس مواد البناء المتاحة الجديدة التي تغير تمامًا الصلابة النسبية لهياكل االاسس- تفاعلات التربة مثل مواد النفايات ومنطقة مكب النفايات لاستخدامها للأغراض السكنية. تم التعامل مع معادلات قابلية التحمل التقليدية مع الاسس الصلبة وبالتالي لا يمكن استخدامها للأساس قليلة الصلابة. لذلك ، تبحث هذه الدراسة في آثار الصلابة النسبية للاسس على سلوكها في توزيع الضغط وحقل تشوه التربة باستخدام اختبار الانضغاط للاسس الشريطية الملساء على سطح الرمال بكثافات تعبئة مختلفة. تم استخدام تسعة اختبارات تجريبية باستخدام ثلاث مواد للاسس (البلاستيك (P) والمطاط (R) والألومنيوم (A)) التي تختلف في صلابة النسبية مع ثلاث كثافات للتربة الرملية. فصلت هذه الدراسة تأثير الصلابة النسبية للاسس على قدرة التحمل والنزول من خلال تحديد آلية الفشل باستخدام قياس سرعة صورة الجسيمات الرقمية (DPIV). تقل قدرة التحمل مع زيادة صلابة نظام الأساس. هذا الانخفاض ، مع ذلك ، يرتبط أيضًا بنزول نهائي أقل. تجدر الإشارة إلى أنه يمكن ملاحظة اتجاه واضح في أحجام سطوح فشل الانزلاق عند مقارنة بين الأساس المرنة والصلبة. تتحرك جزيئات التربة في منطقة الفشل أسفل قاعدة الاساس على أعلى إزاحة عمودية لزيادة صلابة نظام الاساس. يؤثر التغير في الصلابة النسبية لنظام الأساس على منطقة التشوه والفشل لطبقة الرمل وقد تم إجراء تحليلات دقيقة في سلوك النزول و الضغط وآليات الفشل وحقول السرعة.
مناقشة رسالة ماجستير في قسم هندسة الموارد المائية
  نوقشت رسالة الماجستير الموسومة : " دراسة تجريبية حول ميزات التأكل الموضعي مقدم سد غاطس ذي الفتحة الضيقة مستطيلة الشكل " " Experimental Study for Local Scour Features Upstream Rectangular Shape Slit Weir" التي  اعدها السيد نعيم زاير نكاد طالب الماجستير رسالة مقدمة الى كلية الهندسة / جامعة بغداد وهي جزء من متطلبات نيل درجة الماجستير في هندسة الموارد المائية /هيدروليك بإشراف أ..د جعفر صادق معتوق يوم الاربعاء المصادف 17/3/2021.تكونت لجنة المناقشة لهذه الرسالة من :
          المنصب في اللجنةمحل العملالاختصاص الدقيقالشهادةالأسماللقب العلميت
رئيساقسم الهندسة المدنية / الجامعة التكنلوجية هندسة موارد مائية / هندسة موارد مائية دكتوراهأ..د جعفر صادق معتوقاستاذ1
عضواهندسة موارد مائية /كلية  الهندسة / جامعة بغداد هندسة موارد مائية / هندسة موارد مائية دكتوراهأ.م.د حيدر عبد الامير خضيراستاذ مساعد2
عضواهندسة موارد مائية /كلية  الهندسة / جامعة بغداد هندسة مدنية / هندسة المنشأت الهيدروليكية دكتوراهم.د حيدر قيس مجيدمدرس3
مشرفاهندسة موارد مائية /كلية  الهندسة / جامعة بغداد هندسة مدنية / هندسة موارد مائية دكتوراهأ..د  ثامر احمد محمداستاذ4
   تهدف هذه الدراسة إلى التحقق من تأثير موقع فتحةالهدار ، منسوب القمة ، شدة الجريان  و متوسط ​حجم الرواسب d50  لقاع  القناة على مساحة الانجراف في موقع  مقدم السد. تم استخدام قناة مختبرية بابعاد 0.3 م عرض ، و 0.3 م عمق وبطول 10 م لاجراء التجارب في مختبر الهدروليك التابع لقسم هندسة الموارد المائية – كلية الهندسة – جامعة بغداد. تم تصنيع نماذج هدارات من الزجاج الشفاف بفتحة شق ذات أبعاد مختلفة. تراوحت بين (11.0 ، 10.0 ، 9.0 ، 8.0 ، 7.0) سم اما العرض بقى ثابتًا وكان  بقياس 6.0 سم. هذا جعل منسوب اعلى الشق يكون (0 و 1.0 و 2.0 و 3.0 و  4.0) سم فوق قاع القناة المتغير ، لوحظ الحد الأقصى لعمق الانجراف وحجمه حصل عندما كان ارتفاع الشق مساويا ل 11.0 سم بتصريف 8 لتر / ثانية وقاع رواسب بحجم ملم d50 = 0.3 مم وموقع الفتحة في المنتصف. من النتائج التجريبية ، لوحظ أن مسافة حفرة الانجراف العمودية لاتجاه الجريان في القناة المختبرية لاتجاه التدفق ، Ys كانت أكبر من مسافةحفرة الانجراف باتجاه مواز للجريان، Xs. لجميع الحالات المختبرية في حالة الفتحة الجانبية للهدار. تم العثور على قيمة Yلشدة الجريان القصوى للقاع الرملي المتحرك مع d50 = 0.30  مم و 0.70 مم  وكانت 24.0 سم و 15.0 سم على التوالي. بينما كانت تساوي 11.3 سم و 12.1 سم في حالة شدة الجريان الأدنى مع القاع الرملي المتغير d50 = 0.30 مم و 0.70 مم على التوالي. مستوى القمة في الهدار ذو الفتحة الضيقة له تأثير كبير على حجم الانجراف اذ انه عندما تم تغيير مستوى القمة سم إلى 4 سم فأن  حجم الانجراف قل  بمقدار 9.8 أضعاف.   
الأستاذ الدكتور أحمد عبدالصاحب محمد علي 
ولد العالم احمد عبد الصاحب محمد علي في الكوفه عام 1949 من عائلة معروفه واكمل دراسته الجامعية في كلية الهندسة جامعة بغداد عام 1970 ليحصل على شهادة الهندسة المدنية وعمل في مديرية الاشغال العامة بكربلاء لمدة سنه ثم سافر الى انكلترا ليكمل دراسة الماجستير عام 1972 جامعة نيوكاسل و نال شهادة الدكتوراه ايضا من نفس الجامعة عام 1978 ثم عاد الى العراق ليكمل مسيرته العلمية في كلية الهندسة بجامعة بغداد له العديد من البحوث المنشورة في مجلات علمية عراقية و عالمية و اشرف على العديد من طلبة الدراسات العليا في مرحلة الملجستير و الدكتوراه كما اسهم في تصاميم العديد من السدود و المحطات داخل العراق و استشاري في البنك الدولي اضافة الى وزارة الموارد المائية و السدود العراقية ,عمل كتدريسي في كلية الهندسة طوال فترة عمله في كلية الهندسة اضافة الى انه كان عضوا في المكتب الاستشاري الهندسي لجامعة بغداد  كما تسنم منصب رئيس قسم هندسة المواردالمائية و منصب عميد لكلية الهندسة جامعة بغداد  من 2012 الى 2016  اضافة الى منصب الامين العام للجمعية العلمية لكليات ومعاهد الهندسـة في الجامعات اعضاء اتحاد الجامعات العربية  بعدها احيل على التقاعد ليكمل بعدها مشواره العلمي في جامعة اوروك كمساعد علمي لرئاسة الجامعة .توفي عام 2021 بعد مسيرة علمية طويله تميز خلالها بطيبة يشهد لها الجميع فكان مثالا للاخ و الاب في تعامله مع زملائه ومع طلبته رحمه الله عليه ولا يمكن للكلمات ان تفيه حقه .
مناقشة رسالة ماجستيرالموسومة " حركة المياه خالل التربة تحت الري بالتنقيط باستخدام موديالت مختلفة المتصاص الجذر " في قسم هندسة الموارد المائية
 تمت في قسم هندسة الموارد المائية مناقشة رسالة الماجستير للطالبة اسراء سعد فرج والموسومة:" Water Movement through Soil under Drip Irrigation Using Different Models of Root Uptake"فيقاعة الدكتور نجيب خروفة في قسم هندسة الموارد المائية  حيث اشرف على  الرسالة  الأستاذ المساعد الدكتور ميسون بشير عبد وكانت لجنة المناقشة متكونه من الأستاذ المساعد الدكتور باسم شبع عبد رئيساً والأستاذ المساعد الدكتور حيدر عبدالامير الثامري والأستاذ المساعد منتصر عبدالحميد عبد اعضاءاً وتلخص البحث بما يلي:الري بالتنقيط هو أحد تقنيات الري المتطورة الجيدة لانه يوفر المياه مباشرة للتربة من خلال المنقطات. يمكن وصفه على انه التجهيز البطيء للماء بشكل قطرات أو تيار صغير مستمر من الماء في نقاط محددة على طول أنبوب التوزيع. أحد أهم الجوانب المهمة في التصميم شبكة ري بالتنقيط السطحي هو أبعاد المنطقة المبتلة للحد من ضائعات الماء عن طريق عملية التبخر والتغلغل العميق، وتجهيز الماء مباشرة الى المنطقة الجذرية.تعتمد المنطقة المبتلة تحت ري بالتنقيط بشكل مباشرة على تصريف المنقطة، نوع التربة، محتوى الرطوبي الابتدائي للتربة، والايصالية الهيدروليكية للتربة.الهدف من هذا البحث هو دراسة نمط الترطيب (نصف القطر والعمق المبلل) لمنقط ري سطحي بوجود نباتات عددياً باستخدام  HYDRUS-2D لانواع مختلفة من الترب ، ودراسة تأثير موديلات مختلفة ً لامتصاص الجذور على المنطقة المبللة لمنقط سطحي، كذلك دراسة تأثير موديلات هيدروليكية مختلفة للتربة على المنطقة المبللة. تم تطويرنموذج تدفق المياه ثنائي الابعاد من خلال أوساط مسامية متجانسة من منقط ري سطحي باستخدام HYDRUS-2D ذو الاصدار 2.04 لمحاكاة الابعاد العمودية والافقية لانماط الابتلال لمنقط واحد. يعد برنامج HYDRUS-2D طريقة فعالة للتحقيق في جريان المياه في الاوساط المسامية من خلال حل معادلة ريشارد مع الاخذ بنظر الاعتبار امتصاص المياه بواسطة جذور النباتاتتم محاكاة أنماط الترطيب لمنقط ري سطحي حيث تم اختيار ثلاث تصاريف للمنقطة (0.75,0.5, 1 لتر/ساعة) ، ثلاث محتويات رطوبية حجمية ابتدائية لتربة تتراوح بين السعة الحقلية ونقطة الذبول، وثلاث انواع من النباتات (الذرة، الطماطم، والذرة الرفيعة الحلوة). تم التنبؤ لانماط الترطيب كل ثلاثين دقيقة من وقت الري الكلي المساوي ثلاث ساعات.كانت نتائج البحث التي تم الحصول عليها من النموذج العددي متوافقة بشكل جيد مع تلك التي تم الحصول عليها من التجارب الحقلية لمراجعة االادبية. النتائج التي توصل اليها BROOKS AND COREY (1964) متوافقة بشكل جيد مقارنة بالنماذج المختلفة الاخرى. كان جذر مربع الخطأ (0.23)سم في حين الخطأ النسبي-1%)) و(1) لكفاءة النمذجة لنصف القطر المبلل، بينما العمق المبلل كان جذر مربع الخطأ (0.89)سم والخطأ النسبي (4.05%)ولكفاءة النمذجة (1) .تم مقارنة الصيغة المطورة مع القيم التي تم الحصول عليها من برنامج HYDRUS-2Dوكانت النتائج توافق جيد. كان جذر مربع الخطأ لايزيد عن (0.40)سم ولكفاءة النمذجة اكبر من (0.98)للتربة الرملية المزيجية، وللتربة الطينية المزيجية كان جذر مربع الخطأ لايزيد عن (0.31)سم ولكفاءة النمذجة اكبر من (0.95).
مناقشة طالب الماجستيرعبدالله عامر ريحان حميد من قسم هندسة الموارد المائية/جامعة بغداد
  تمت مناقشة رسالة الماجستير للطالب عبدالله عامر ريحان حميد في قسم هندسة الموارد المائية والموسومةPhysical and Numerical Simulations of the Flow in Deadend and Looped Manifoldsفي يوم الاربعاء الموافق 3 - 2 - 2021 وبأشراف الأستاذ الدكتور ثامر احمد محمد والأستاذ المساعد الدكتور وسام حميد عليوي                                        وقد تألفت لجنة المناقشة من السادة:
  • الأستاذ الدكتور رياض زهير جويعد            جامعة بغداد/ كلية الهندسة                         رئيسا
  • الأستاذ المساعد الدكتور باسم حسين خضير جامعة بغداد/ كلية الهندسة                         عضوا
  • الأستاذ المساعد الدكتور عبدالصاحب توفيق     الجامعة المستنصرية/ كلية الهندسة              عضوا
  • الأستاذ الدكتور ثامر احمد محمد   جامعة بغداد/ كلية الهندسة                   مشرفا اولا
  • الأستاذ المساعد الدكتور وسام حميد عليوي الجامعة التكنولوجية/ كلية الهندسة         مشرفا ثانيا
 وتلخص البحث بما يلي:الانبوب المتشعب هو عبارة عن أنبوب مستقيم يحتوي على فتحات جانبية موزعة على طوله ويمكن استخدامه لتجميع وتوزيع الموائع. الانابيب المتشعبة تستخدم على نطاق واسع في العديد من المجالات الهندسية والصناعية مثل؛ انظمة توزيع المياه، محطات معالجة المياه، أنظمة الري، انظمة الانابيب في محطات ضخ المياه، شبكات الصرف الصحي، انظمة توزيع الوقود في محركات السيارات، اجهزة نقل الحرارة مثل المكثفات والمبخرات وفي اجهزة المعالجات الكيميائية الدقيقة. ويعتبر جريان الموائع في الانابيب المتشعبة مشكلة متقدمة في تطبيقات الهندسة الهيدروليكية. حيث ان المشكلة الرئيسية في جميع هذه التطبيقات هي عدم انتظامية تدفق المائع خلال الفتحات الجانبية. حيث تفترض العديد من الدراسات السابقة ان التدفق خلال الفتحات الجانبية هو متساوي وأن معامل الاحتكاك على طول الانبوب هو ثابت. بالإضافة الى ذلك، هنالك العديد من الدراسات السابقة قدمت صيغ مختلفة لحساب الـ (G Factor) الذي يمثل خسائر الاحتكاك في الانابيب المتشعبة يجب التحقق من صحتها. في هذه الدراسة، تم تصميم وتصنيع النماذج الفيزياوية في مركز التدريب والمعامل التابع للجامعة التكنولوجية، بغداد، العراق، من اجل التحقق من انتظامية توزيع الجريان ومعرفة مقدار خسائر الاحتكاك ومدى تغاير معامل الاحتكاك على طول الانابيب المتشعبة ذات النهاية المغلقة والحلقية. حيث تكونت منظومة العمل من خزانات لتجهيز المياه، انابيب متشعبة، مضخات، صمامات، خزانات لتجميع المياه، بيزوميتر، وأجهزة استشعار الضغط مع مسجل البيانات. حيث كان طول الانبوب المتشعب ذو النهاية المغلقة ١٨ متر وقطره ٢,٥٤ سنتمتر بينما كانت الانابيب المتشعبة ذات النهاية الحلقية بطول 19 متر وقطر 2,54 سنتمتر أيضا. وكان ارتفاع عمود الماء في خزان التجهيز ثابت في جميع التجارب (٢,٧٦ متر). تم قياس ارتفاع عمود ضغط الماء عند كل فتحة جانبية على طول الانابيب المتشعبة بواسطة حساسات خاصة لقياس ضغط الماء ومن ثم تم التحقق من دقة عمل هذه الحساسات بواسطة البيزوميتر. أيضا تم قياس كمية التدفقات الخارجة من الفتحات الجانبية باستخدام الطريقة الحجمية التقليدية. استخدمت خمس مسافات متغيرة بين الفتحات الجانبية بالنسبة للأنبوب ذو النهاية المغلقة وهي (٠,٧٥ متر، ١،٥ متر، ٢ متر، ٢،٥ متر و٣ متر).تم حساب معامل الانتظامية (q1\qn) (النسبة بين التصريف من المخرج الأخير، qn إلى التصريف من المخرج الأول، q1) للمشعبات ذات النهاية المغلقة والحلقية. حيث وجد ان قيم معامل الانتظامية تتغير مع نسبة التباعد بين الفتحات) (d\S) النسبة بين تباعد المخارج، S إلى قطر الانبوب المتشعب، (d.  بالنسبة لجميع النماذج التي تمتلك نفس الطول والقطر والضغط الداخل ونسبة التباعد تم الحصول على أعلى قيمة لمعامل الانتظامية (0,926) وكانت في الانبوب المتشعب ذو النهاية الحلقية. لذلك، فإن الانابيب المتشعبة ذات النهاية الحلقية تحسن من انتظامية توزيع الجريان وتقلل من مقدار خسائر الضغط بنسبة 80٪.أيضا، وجد أن نسبة الاحتكاك ((f1\ fn (النسبة بين معامل الاحتكاك في المقطع الأخير،fn  إلى معامل الاحتكاك في المقطع الأول، f1 ) تتغير مع نسبة التباعد بين الفتحات الجانبية. بالنسبة لجميع النماذج التي تمتلك نفس الطول والقطر والضغط الداخل ونسبة التباعد تم الحصول على أقل نسبة احتكاك (0.028) وكانت في الانبوب المتشعب ذو النهاية الحلقية. واعتمادًا على عدد الفتحات الجانبية للأنبوب المتشعب ذو النهاية المغلقة والحلقية، وجد ان قيم (G Factor) تتراوح ما بين 0.011إلى 0.61. تم استخدام البيانات التجريبية للتحقق من صحة الصيغ المختارة لحساب الـ (Factor G) والتوصية بالصيغة التي تعطي نتائج قريبة للبيانات التجريبية. بالإضافة الى ذلك، تم اجراء محاكاة عددية باستخدام برنامج (CFD) من اجل التنبؤ بقيم السرعة والضغط عند كل فتحة على طول الانبوب المتشعب. بعدها تم اجراء اختبار احصائي عن طريق تطبيق معادلة الجذر التربيعي لمتوسط الانحراف المعياري (RMSD) للمقارنة ما بين قيم السرعة والضغط التي تم الحصول عليها من النموذج العددي وقيم السرعة والضغط التي تم قياسها تجريبيا لجميع الانابيب المتشعبة ذات النهاية المغلقة والحلقية. حيث أظهرت نتائج المقارنة أن القيم التي تم الحصول عليها من النموذج العددي كانت متوافقة مع البيانات التجريبية. وبالتالي فان هذه النتائج تؤكد دقة النموذج العددي المستخدم في هذه الدراسة.  ومن الجدير بالذكر ان الطالب نشر ثلاث بحوث، الأول عنوانه:"Physical Simulation for the Flow in Straight and Rectangular Loop Manifolds"في مجلة كلية الهندسة في جامعة بغداد (journal of Engineering).والثاني عنوانه:"Physical and Numerical Simulations of the Flow in Straight and Triangular Manifolds"في مجلة الهندسة والتكنولوجيا في الجامعة التكنولوجية ((Engineering and Technology Journalوالثالث عنوانه:"Physical Modeling of Flow and Head along Straight Dead-end and Looped Manifolds"في مجلة العلوم والتكنولوجيا في جامعة بيرتانيكا الماليزية والتي تعتبر ضمن مستوعبات سكوبس وكلاريفيت Pertanika Journal of Science & Technology (JST)  
المؤتمر الهندسي الثامن والدولي الثاني لكلية الهندسة – جامعة بغداد
 بمناسبة اليوبيل المئوي لتأسيسها، وتحت شعار (كلية الهندسة – جامعة بغداد في يوبيلها المئوي: عنوان للتميّز والإبداع في التعليم الهندسي)، ستنظّم الكلية مؤتمرها الهندسي الثامن والدولي الثاني للفترة ( 24-25 / 11 / 2021 )، وسيعلن الدوار الأول للمؤتمر والموقع الرسمي له خلال الأيام القليلة القادمة بإذن الله. سيغطّي المؤتمر كافة التخصصات الهندسية من خلال محاوره الأربعة الآتية:
  • الهندسة المدنية، هندسة المساحة، هندسة الموارد المائية، وهندسة العمارة
  • الهندسة الميكانيكية، هندسة الطاقة، وهندسة الطيران
  • الهندسة الكهربائية، الهندسة الإلكترونية والإتصالات، وهندسة الحاسبات
  • الهندسة الكيمياوية، هندسة النفط، والهندسة البيئية
يهدف المؤتمر الى توفير وتوثيق المعلومات الهندسية القيـّـمة وأحدث المستجدّات البحثية في مجال العلوم الهندسية التطبيقية وتبادل الخبرات في حقول الهندسة والتكنلوجيا المختلفة، وبما يخدم تقدم حركة البحث العلمي وتطوير العلوم الهندسية والتكنولوجية باعتبارها تمثل الركيزة الاساسية في النهوض وديمومة التطور. كما سيوفر المؤتمر البيئة المناسبة للباحثين والمهندسين في مختلف القطاعات للتواصل فيما بينهم ولالقاء بحوثهم ودراساتهم النظرية والتطبيقية وتقديم الحلول للقضايا الهندسية المختلفة، فضلا عن دعم حركة البحث العلمي في القطاعين الاكاديمي والتطبيقي واعطاء دور مميز للجامعة في تعزيز التقدم العلمي العالمي وتنمية وتطوير الحياة البشرية.ويسرّ كلية الهندسة بهذه المناسبة أن تدعو جميع العلماء والباحثين والتدريسيين للمشاركة الفعالة في هذا المؤتمر، خدمة لمسيرة العلم والبحث العلمي والبناء وإعادة الإعمار في بلدنا الحبيب، ولتطوير وتنمية الحياة البشرية على وجه البسيطة.       
مناقشة رسالة الماجستير للطالب (احمد مجيد حسين) في قسم هندسة الموارد المائية
  تمت مناقشة رسالة الماجستير للطالب (احمد مجيدحسين ) في قسم هندسة  الموارد المائية  تحت اشراف الاستاذ الدكتور رياض زهير الزبيدي في يوم الاثنين الموافق 12/10/2020 عن رسالته الموسومة:   "HYDRODYNAMIC INVESTIGATIONS ON USING CURVED GROYNES IN CHANNELS"  " تحريات هيدروديناميكية لاستخدام السنون الحجرية المقوسة في القنوات "  وقد تألفت لجنة المناقشة من الذوات المدرجة اسماءهم ادناه: أ. د. ثامر محمد احمد                          رئيساأ.م.د. باسم شبع عبد                           عضواأ.م.د. هيثم علاء الشامي                       عضواأ.د.رياض زهير الزبيدي                       مشرفا تهدف هذه الدراسة إلى البحث عدديًا في سلوك التدفق حول السنون الحجرية المقوسة من خلال التغيرات في السرعة وإجهاد القص عند قاع القناة وبأشكال مختلفة. تم اختيار نوعين من السنون الحجرية المقوسة وهما السن الحجري ذات شكل‏ (القطع الناقص) ,والسن الحجري ذات شكل (الهوكي), مع مجموعة متنوعة من معلمات التصميم. تضمنت معلمات التصميم عدد السنون الحجرية ونسب الغمر لأجل السن الحجرية ذات شكل‏ (القطع الناقص ) ، بالإضافة إلى أن عدد السنون الحجرية (مفردة وسلسلة) وزوايا التوجيه والمسافة بين السنون الحجرية ونسب الغمر لأجل للسن الحجري ذات شكل (الهوكي).وبشكل عام ، استخدمت هذه الدراسة بيانات التجارب المختبرية المنشورة حول السنون الحجرية المقوسة للتحقق من استخدام برنامج CFD. ثم يتم إنشاء نموذج التدفق بواسطة هذا البرنامج لإجراء تحقيقات حول تأثير استخدام نوعين من السنون الحجرية المقوسة على الديناميكا المائية للتدفق. علاوة على ذلك يعد ANSYS Fluent جزءً من CFD الذي استخدم في هذه الدراسة لمحاكاة التدفق حول السنون الحجرية المقوسة. وأخيرًا ، تم تنفيذ واحد وستون تشغيلًا عدديًا‏ بواسطة برنامج CFD.في جميع التشغيلات ، تم استخدام أبعاد القناة المفتوحة بطول 4م وعرضها 0.4م وأرتفاعها 0.175م مع منحدر ثابت للقاع. علاوة على ذلك تم وضع أول سن حجري على بعد 1م من مدخل التدفق مع أرتفاع ثابت هو 10 سم وسمك ثابت هو 1 سم ، وكذلك عرض ثابت للسنون الحجرية  يساوي 7 سم. وأخيرًا ، ثلاثة أعماق مائية منتظمة هي (7.5سم ، 10.0سم ، 12.5 سم) تتوافق مع التصاريف (0.0057  م3/ثانية، 0.0087 م3/ثانية ، 0.0119 م3/ثانية )، على التوالي. وتمثل هذه الأعماق ثلاث نسب غمر 75 ، 100 ، 125٪.أظهرت نتائج التحقق وجود اتفاق منطقي جيد بصري بين البيانات التجريبية السابقة والمحاكاة العددية تحت نفس الظروف. ولذلك فأن نموذج CFD لديه قدرة جيدة على محاكاة الجريان الهيدروليكي حول السنون الحجرية وبدقة ملائمة.نتيجة المحاكاة لبرنامج CFD ، بالنسبة لشكلين من السنون الحجرية المقوسة ، فإنَّ عدد السنون الحجرية لها تأثير محدود على السرعة وقيم إجهاد القص, ولذلك تعتمد عدد السنون الحجرية ‏على طول ضفة النهر المراد حمايتها والتي قد تكون (مستقيمة، منحنية، متعرجة) لطول النهر. قد زادت نسبة إجهاد القص عند القاع مع زيادة قيمة التصاريف للسنون الحجرية (المفردة والمسلسلة) بالاضافة إلى نسبة الغمر المفضل استخدامها  بين 75-100%, أي يجب أن يكون ارتفاع االسنون الحجرية مساوياً لمستوى ضفاف الأنهار.في سلسلة السنون الحجرية ذات شكل (الهوكي) ، مع نسب الغمر المختلفة والمسافة بينها بصورة شاملة فإنَّ‏ زاوية التوجيه 120 درجة لها أكبر تأثير على الديناميكا المائية للتدفق, بينما زاوية التوجيه ٩٠ درجة لها أصغر تأثير.في  السن الحجري الفردي ، يعتبر السن الحجري ذات شكل (الهوكي)  بزاوية التوجيه 90 درجة هو الأفضل مقارنة مع السن الحجري (القطع الناقص)  من حيث التغيرات في السرعة وإجهاد قص عند القاع . علاوة على ذلك ، فإنَّ المسافة التي تقل فيها السرعة بالنسبة للسن الحجري ذات شكل (الهوكي)  ‏ الفردي تساوي ضعف المسافة للسن الحجري (القطع الناقص) الفردي. والسن الحجري ذات شكل (الهوكي)  بزاوية التوجيه 90 درجة  هو الأفضل عند مقارنته بسلسلة من السن الحجري (القطع الناقص ) من حيث التغيرات في السرعة وإجهاد القص عن القاع وكذلك مسافة السرعة المنخفضة. علاوة على ذلك ، سيكون اختيار السن الحجري ذات شكل (الهوكي) الفردي أكثر اقتصادًا‏ من سلسلة السن الحجري (القطع الناقص ).أما بالنسبة لسلسلة السنون الحجرية ، فإنَّ السن الحجري (القطع الناقص) هو الأفضل‏ مقارنة مع السن الحجري ذات شكل (الهوكي) بزاوية التوجيه 90 درجة من حيث التغيرات في السرعة وإجهاد قص عند القاع بالإضافة إلى‏ مسافة السرعة المنخفضة. ومع ذلك ، فإنَّ السنون الحجرية ذات شكل (الهوكي) هي أسهل من حيث التصميم والتطبيق.
مناقشة رسالة الماجستير للطالبة (ايمان عبد السلام علوان) في قسم هندسة  الموارد المائية
تمت مناقشة رسالة الماجستير للطالبة (ايمان عبد السلام علوان) في قسم هندسة  الموارد المائية  تحت اشراف الاستاذ الدكتور رياض زهير الزبيدي في يوم الاثنين الموافق 28/9/2020 عن رسالتها الموسومة:الأثر الهيدروليكي لأستخدام وحدات خشونة ذات حجم هندسي كبير في القنوات المفتوحةوقد تألفت لجنة المناقشة من الذوات المدرجة اسماءهم ادناه:أ.م.د. حيدر عبد الامير الثامري                       رئيساأ.م.د. باسم شبع عبد                                    عضواأ.م.د. شيماء عبد المطلب الهاشمي          عضواأ.د.رياض زهير الزبيدي                       مشرفاتناولت الدراسة الحلول المستخدمة لحماية القنوات المفتوحة من التعرية والترسيب في مقاطع محددة على امتداد المجاري المائية وذلك عن طريق زيادة خشونة سطح قعر القنوات من خلال استخدام احجاراً كبيرة أو كتلاً خرسانية والتي تعمل على زيادة خشونة القعر وينتج عنها اضافة مقاومة للجريان وبالتالي تغيير الخصائص الهيدروليكية لمقطع الجريان. يمكن الاستفادة من احداث هذا التغيير في خواص الجريان في السيطرة على التعرية أو الترسبات في مناطق محددة في القنوات. يعد كل من الشكل الهندسي لعناصر الخشونة والعدد المستخدم وترتيبها عوامل رئيسية مؤثرة في احداث التغيير في الخصائص الهيدروليكية للجريان.تم تحري توزيع سرع الجريان على طول القناة بأستخدام سلسلة من الاختبارات وذلك لايجاد أفضل شكل وارتفاع وترتيب لعناصر الخشونة. استخدم برنامج  ANSYS APDLوبرنامج ANSYS FLUENT لمحاكاة جريان الماء خلال القناة المفتوحة بوجود عناصر الخشونة. تم أعداد نموذج رياضي بالاعتماد على شروط حدودية مختلفة من تصريف وعمق الماء في مقدم ومؤخر القناة . أستخدمت ثلاثة أشكال مختلفة لعناصر الخشونة وهيBlock  T-shape و  Standard Baffle BlockوCurved Baffle Block وبثلاثة ارتفاعات مختلفة وهي 3سم و4.5سم و6سم. تم ترتيب عناصر الخشونة بثلاثة توزيعات مختلفة وهي التوزيع بسطرين على جزء من عرض القناة وباربعة أسطر أيضا على جزء من عرض القناة والتوزيع الكامل على عرض القناة.أظهرت النتائج ان تأثير عناصر الخشونة على تغاير السرعة ضمن مقطع القناة يزداد بزيادة تصريف الماء وتتأثر قيم السرعة بزيادة ارتفاع عناصر الخشونة وزيادة عدد أسطر عناصر الخشونة. كان الاداء الهيدروليكي في حالة توزيع عناصر الخشونة على عرض القناة والتوزيع بالاربعة أسطر لهما متقارب تقريبا في حالة الحد الاعلى للتصريف البالغ 24.48 لتر/ثانية وأن الفرق في التأثير للتوزيع ذو الاربعة أسطر يكون في جزء من مقطع الاختبار بحسب مكان تواجدها. وبينت النتائج ان تأثير التوزيع بالاربعة أسطر يكون أكثر بنسبة 33% من ذلك باستخدام سطرين من عناصر الخشونة وبنسبة 10% من التوزيع الكامل على عرض القناة في حالة التصريف 5.8 لتر /ثانية.تزداد قيم السرعة قرب سطح الماء في حالة أستخدام ارتفاع عنصر الخشونة 6سم أو في حالة توزيع عناصر الخشونة على عرض القناة أكثر من باقي الحالات الاخرى وذلك بنسبة 10% -30% بالاضافة الى ان السرعة تزداد في حالة التصريف 5.8لتر/ثانية أكثر من حالة التصريف 24.48لتر /ثانية بنسبة 3-72% . تأثير ارتفاع عنصر الخشونة 6سم يكون أكبر في معدل نقصان السرعة بالقرب من القعر عن باقي أرتفاعات عناصر الخشونة وذلك بنسبة 10%-30%.كما أظهرت النتائج أن في حالة التصريف 5.8 لتر /ثانية تكون Standard Baffle Block هي الافضل في نقصان قيم السرعة في حالة أرتفاع عناصر الخشونة 3سم بنسبة 10% مقارنة مع الاشكال T-shape Blockو Curved Baffle Block. أما بالنسبة لباقي الارتفاعات فكانت Curved Baffle Block هي الافضل حيث تناقصت السرعة بنسبة 10% و 5% مقارنة مع Block T-shape و Baffle Block Standard. في حالة التصريف 24.48 لتر /ثانية فأن جميع أشكال عناصر الخشونة لها نفس التأثير لنفس خصائص الجريان.
مناقشة رسالة ماجستيرالموسومة " توزيع المياه في تربة طبقية تحت نظام الري بالتنقيط تحت السطحي" عبر المنصة الالكترونية في قسم هندسة الموارد المائية
 تمت في قسم هندسة الموارد المائية مناقشة رسالة الماجستير للطالب اياد خالد محمد والموسومة:"Water Distribution in Stratified Soil Under Subsurface Drip Irrigation "وعبر المنصة الالكترونية حيث اشرف على  الرسالة والأستاذ المساعد الدكتور باسم شبع عبد وكانت لجنة المناقشة متكونه من الأستاذ المساعد الدكتور حيدر عبد الأمير الثامري رئيساً والأستاذ المساعد الدكتورفائز حسين هاشم والأستاذ المساعد الدكتور ميسون بشير عبد اعضاءاً وتلخص البحث بما يلي:نظرا للنقص في توافر المياه والطلب المتزايد عليها من قبل المستخدمين، خاصة لأغراض ري الأراضي الزراعية في المناطق الجافة، كانت هناك حاجة إلى استخدام طرق ري بديلة ذات كفاءة عالية بدلاً من الطرق القديمة الشائعة مثل نظام الري بالتنقيط تحت السطحي, والذي يعتبر من الطرق عالية الكفاءة نظرا لقرب المنقطات من المنطقة الجذرية وكذلك قلة الخسائر المائية الناتجة عن التبخر من سطح التربة والاختراق العميق.تم إجراء اكثر من ثلاثين تجربة مختبرية لنظام الري بالتنقيط تحت السطحي في تربة طبقية تتكون من ثلاث طبقات (تربة مزيجية طينية غرينية وتربة مزيجية رملية وتربة رملية) للتحقق من توزيع المياه وأنماط الابتلال تحت ظروف تشغيل مختلفة على هذه الترب. تم استخدام ثلاثة معدلات مختلفة لإضافة الماء (0.5 و1 و2 لتر/ساعة), وثلاثة محتويات مائية مختلفة لطبقات التربة, وأربعة تسلسلات طبقية مختلفة. بالإضافة إلى دراسة تأثير الإضافة المتقطعة لمياه الري باستخدام معدلي إضافة متقطعة (1\2 و 1\3) لإضافة 6 لترات من المياه. علاوة على ذلك، تم دراسة نمط التداخل بين جبهتين مبللتين لمنقطتين متجاورتين مع ثلاث مسافات بينهما (30 و40 و50 سم).تم تطوير نموذج عددي باستخدام برنامج (HYDRUS-2D) لمحاكاة الأبعاد الأفقية والعمودية لمنطقة الابتلال لمنقط واحد ونمط التداخل بين جبهتي ابتلال لمنقطتين مدفونتين تحت سطح التربة الطبقية وظروف تشغيل مماثلة للتجارب المختبرية.يزداد حجم نمط الابتلال بزيادة كل من معدل المياه المضافة بواسطة المنقط والمحتوى المائي الأولي لطبقات التربة. يمكن توفير كمية كبيرة من مياه الري عند استخدام طريقة الري بالتنقيط المتقطع، وكانت أفضل نسبة تم الحصول عليها هي (1\3), حيث ازدادت ابعاد جبهة الابتلال بالاتجاهين الافقي والعمودي بنسبة 33.3 و37.7% على التوالي عند المقارنة مع الري المستمر, لاضافة 6 لتر من الماء وبمعدل اضافة 1 لتر\ساعة. نتج عرض واسع وعمق قليل لنمط الابتلال عندما تكمن طبقة التربة الناعمة في منتصف تسلسل التربة الطبقية. في حين أن العرض القليل والعمق العميق لنمط الابتلال قد نتج عندما تكمن طبقات التربة الخشنة في اعلى تسلسل التربة الطبقية. تم تحقيق تداخل سريع بين أنماط الابتلال المتجاورة مع زيادة معدل إضافة الماء من المنقطتين، لمسافة ثابتة بينهما.تم استخدام المؤشرات الإحصائية لغرض تقييم صحة نتائج توزيع المياه التي تنبأ بها النموذج المطوّر للتربة الطبقية. لذلك تمت مقارنة النتائج المتوقعة التي تم الحصول عليها من النموذج العددي مع تلك التي تم الحصول عليها من التجارب المختبرية. أظهر التحليل الإحصائي للبيانات التي تم الحصول عليها أن نتائج المحاكاة للنموذج العددي له قدرة جيدة على تقدير أبعاد نمط الابتلال للمنقط المنفرد والمنقطتين. وكذلك تم تحقيق توافق جيد بين نتائج التجارب المختبرية والمحاكاة. كان معدل قيم جذر متوسط مربع الخطأ (RMSE) يساوي 1.53، في حين معدل قيم معامل التحديد () يساوي 0.994، وفي كلا الاتجاهين.ومن الجدير بالذكر ان الطالب نشر بحثين عن الرسالة الاول بعنوانWater Distribution and Interference of Wetting Front in Stratified Soil Under a Continues and an Intermittent Subsurface Drip Irrigationفي مجلة Journal of Green Engineeringوالثاني بعنوانNumerical Modelling and Experimental Investigation of Water Distribution in Stratified Soil Under Subsurface Trickleفي المجلة العراقيةهذا وحصل الطالب على تقدير جيدجداً.             
مناقشة رسالة ماجستير الموسومة " تقدير الجريان السطحي في المناطق الجافة باستخدام اداة النمذجة (SWAT) " عبر المنصة الالكترونية في قسم هندسة الموارد المائية
 تمت في قسم هندسة الموارد المائية مناقشة رسالة الماجستير للطالب علي محسن فرحان والموسومة:" Estimation of the Runoff in Arid Regions by Using Soil and water Assessment tool (SWAT) (Case study: A part from Iraqi western desert)"وعبر المنصة الالكترونية حيث اشرف على  الرسالة الاستاذ المساعد الدكتور حيدر عبد الأمير الثامري وكانت لجنة المناقشة متكونه من الأستاذ الدكتور رياض زهير جويعد رئيساً والأستاذ المساعد الدكتور باسم شبع عبد والأستاذ المساعد الدكتور عمار حاتم كامل اعضاءاً وتلخص البحث بما يلي:تتطلب إدارة الموارد المائية المعلومات الكافية عن كميات المياه التي تتجمع من الوديان التي تصب في النهر في مواسم الفيضانات على وجه التحديد. تقع منطقة الدراسة في الصحراء الغربية من العراق وتشمل ثلاثة وديان المحمدي والمرج وسهيلة حيث تصب هذه الوديان في نهر الفرات عند مدينة هيت.تهدف الدراسة إلى تقدير وحساب كمية الجريان السطحي خلال فترة طويلة من المحاكاة (1981-2019) بالإضافة الى حساب اقصى تصريف يزوده كل وادي خلال فترة المحاكاة حيث استُخدمت أداة النمذجة سوات (SWAT) المرتبطة بنظام المعلومات الجغرافية (ArcGIS) لغرض محاكاه الوديان الثلاثة. اختيرت طريقة (SCS-CN) لحساب عمق الجريان السطحي بالإضافة الى طريقة (Rational) لحساب التصريف. ان البيانات التي استُخدمت لتشغيل سوات هي نموذج الارتفاع الرقمي (DEM) من القمر الصناعي (SRTM) بدقة 30 م وخريطة لبيانات الغطاء الارضي من موقع وكالة الفضاء الاوربية (ESA) بدقة 300 م بالإضافة الى خريطة تقسيمات ترب منطقة الدراسة من منظمة الاغذية والزراعة العالمية (FAO). استُخدمت بيانات الطقس من (CFSR) جنبًا إلى جنب مع بيانات الطقس من الأرصاد الجوية السطحية والطاقة الشمسية (SSE) التي تقدمها وكالة ناسا (NASA) وإعدادها باستخدام برنامج قاعدة بيانات الطقس (SWAT weather database) لتكون جاهزة للمحاكاة. تمت معايرة والتحقق من صحة نمذجة وادي المحمدي باستخدام برنامج SWAT-CUP واستخدمت التصاريف المسجلة في محطات قياس التصاريف عند كل من محطة هيت والرمادي والورار، واستندت المعايرة إلى بيانات الأرصاد الجوية للفترة من 1 يناير 2002 إلى ديسمبر 31، 2006 بينما كانت فترة التحقق من 1 يناير 2007، الى 31 ديسمبر 2009. أظهرت نتائج المعايرة والتحقق من صحة النموذج تقارب كبير ما بين نتائج المحاكاة والتصاريف المقاسة حيث كانت نتائج قيم كل من (NS،R2) لفترة المعايرة هي (0.76،0.72) على التوالي، بينما كانت نتائج التحقق (0.65،0.63) على التوالي. اما بالنسبة للوديان سهيلة والمرج فقد استخدمت طرق الأقلمة لإيجاد قيمة CN لكل وادي والتي تستند على معدل المسافة بين مركز ومصب الوديان التي تمت معايرتها (حوران والمحمدي) وبين الوديان التي لم تتم معايرتها (سهيلة والمرج). اظهرت نتائج طرق الأقلمة ان قيمة رقم المنحني (CN) لكل من سهيلة والمرج هي (74.8،73.6) على التوالي. بلغ متوسط ​​حجم الجريان السطحي في فترة المحاكاة على المدى الطويل من 1 يناير 1981 إلى 31 أكتوبر 2019 لأودية المحمدي والمرج وسهيلة (79.27،53.67 ،107) مليون متر مكعب، على التوالي بينما بلغ معدل عمق الجريان السطحي (18.25،20.83، 19) ملم، على التوالي، ونتيجة لذلك فإن عمق الجريان السطحي لوادي المرج أكبر من الوديان الأخرى لأن الفواقد المائية في وادي المرج تكون اقل من الوديان الاخرى. بالإضافة الى كون نسبة الغطاء النباتي في وادي المرج اعلى نسبياً من باقي الوديان. بلغ الحد الأقصى للتصريف اليومي خلال فترة المحاكاة (1981 إلى 2019) عند مصب أودية كل من المحمدي والمرج وسهيلة (160 ،100.5، 197) م3\ثا، على التوالي.ومن الجدير بالذكر ان الطالب قام بنشر بحث عن رسالته بعنوان Estimation of the surface runoff volume of Al-Mohammedi Valley for Long-term period using SWAT Modelفي المجلة العراقية للهندسة المدنية جامعة الانبار.هذا وحصل الطالب على تقدير جيدجداً.
قسم هندسة الموارد المائية يقيم حلقات نقاشية لطلبة الدرايات العليا
  نظم قسم هندسة الموارد المائية  في جامعة بغداد-  كلية الهندسة حلقات نقاشية  لطلبة الماجستير (مرحلة البحث) وفق جدول ملعن حيث تم عرض السمنر خلال تطبيق المنصة الالكترونية (google meet) و حضر الاجتماع السيد رئيس القسم أ.م.د. حيدر عبدالامير الثامري والاساتذة المشرفين واللجنة العلمية  وعدد من تدريسيي القسم وطلبة الدراسات العليا في مرحلة البحث .يهدف السمنر الى التعرف على المراحل و النتائج التي توصل اليها الطلبة خلال هذه الفترة و التعرف على اهم المعوقات التي تواجههم بسبب جائحة   19 Covid.هذا واكد السيد رئيس القسم  على ان القسم يسعى للارتقاء بنتاجاته العلمية و بحوث طلبة الدراسات العليا من خلال والسعي الى  دراسة المشاكل التي تطرحها وزارة الموارد المائية  والتاكيد على البحوث التطبيقية في قطاع الموارد المائية   
اجتماع مناقشة مادة المشروع الهندسي للمرحلة الرابعة في قسم هندسة الموارد المائية
 جرت مناقشة المشاريع الهندسية  للمرحلة الرابعة في قسم هندسة الموارد المائية عبر المنصة الالكترونية  يوم الثلاثاء المصادف الحادي والعشرون من تموز وذلك في تمام الساعة التاسعة صباحا وقد قسمت المشاريع البالغ عددها 15 مشروع الى مجموعتين واستمرت المناقشة لمدة اربعة ساعات توزعت على صفين الكترونين و تمت مناقشة الطلاب عن طريق التطبيق (google meet). وكانت المشاريع الهندسة جيدة عموما رغم جائحة   19 Covid.  وحضر المناقشة الاساتذة المشرفين على المشاريع هذا وقد تكونت لجان المناقشة من الاساتذه الافاضلالمجموعة          :Aأ.د. رياض زهير                                  أ.م.د. ثامر أحمد                            أ.م.د.ميسون بشيرالمجموعة          :Bأ.م.د حيدر عبدالامير                  أ.م.د. باسم شبع                               أ.م.  صباح انور 
قسم هندسة الموارد المائية يعقد مجلس قسم افتراضي عبر المنصة الالكترونية
 عقد مجلس القسم  افتراضي لهندسة الموارد المائية عبر المنصة الالكترونبة اجتماعه المرقم (4) في تمام الساعة السابعة مساء يوم الثلاثاء المصادف 14/7/2020 لمناقشة نتائج الدور التكميلي الاختياري الثاني للعام الدراسي 2018 – 2019. حيث عرضت نتائج الامتحانات ونوقش احتياج  اللجنة الامتحانية للجنة ساندة  كما تناول المجلس اولويات وترتيبات مشاريع التخرج للمرحلة الرابعة وناقش الترتيبات الخاصة للتقارير ووضع خطة لسير الامتحانات الالكترونية النهائية. هذا وترأس المجلس الاستاذ المساعد الدكتور حيدر عبد الامير الثامري واعضاء اللجنة العلمية واللجنة الامتحانية وتدريسيي القسم.
مناقشة رسالة ماجستير عبر المنصة الالكترونية في قسم هندسة الموارد المائية
  تمت في قسم هندسة الموارد المائية مناقشة رسالة الماجستير للطالبة مريم هادي دحام والموسومةSimulation Of Sediment Transport In The Upper Reach Of Gharraf River""وعبر المنصة الالكترونية حيث اشرف على  الرسالة الأستاذ المساعد الدكتور باسم شبع عبدوكانت لجنة المناقشة متكونه منالأستاذ الدكتور رياض زهير جويعد رئيساًوالأستاذ الدكتور محمود صالح مهدي  عضواوالأستاذ المساعد الدكتور ثامر احمد محمد عضواوتلخص البحث بما يلي:أدت عدم الصيانة في نهر الغراف على مدى السنوات الماضية إلى تراكم الرواسب و التي قللت من القدرة نهر الغراف على التدفق والتي ستسبب  الى حدوث مشاكل  تشغيلية مستقبلا. وعلاوة على ذلك  أثرت عملية تشغيل ناظم   الحي على الخصائص  الهيدروليكية  وايضا على مورفولوجية  النهر. تمتد الدراسة  الحالية  لنهر الغراف لمسافة58.2 كم بين مدينتي الكوت والحي وتحتوي على نواظم هيدروليكية مهمة مثل  ناظم الرئيسي وناظم الحي,موقعهم في بداية منطقة الدراسة قرب سدة الكوت و قرب مدينة الحي على التوالي.ويهدف هذا البحث إلى محاكاة  الخصائص الهيدروليكية للجريان وانتقال الرواسب في نهر الغراف باستخدام برنامج الهكراس واقتراح الحلول اللازمة من اجل تجنب مشاكل تراكم الرسوبيات وتحسين استيعابية النهر.وقد تم محاكاة الظروف الهيدروليكية المختلفة في كل من الحالة المستقرة والغير مستقرة للجريان في بعد واحد وبعدين اثنين. بالاضافه إلى ذلك ، انشىء نموذج احادي البعد لنقل الرسوبيات لتقييم كمية الرواسب في النهر. وقد تم محاكاة نموذجين هيدروليكيين احادي وثنائي البعد في ظروف الجريان المختلفة التي تغطي جميع الظروف التشغيلية في نهر الغراف ،وقد تم محاكاة نموذج  هيدروليكي احادي البعد في ظروف تشغيلية مختلفة من فتح بوابات النواظم.لغرض المعايرة والتحقق من النماذج تم اختبار العديد من القيم معامل الخشونة مانينغ ، وتمت مقارنة مستويات المياه  مع قيم المقاسة  وكانت أفضل القيم لمعامل الخشونة للحالة المستقرة والغير  مستقرة في نهر الغراف هو 0.026 و 0.025 على التواليواظهرت نتائج المحاكاة للنماذج الهيدروليكية الاحادية البعد لأربع سيناريوهات لمعدلات الجريان تتراوح بين 90-350 متر مكعب/ثانية انه لا ينبغي لناظم الغراف الرئيسي ان يطلق تصاريف  اقل  من 100 متر مكعب/ثانية  للمحافظة على معدلات المطلوبة للتصاريف التي تغذي  الفروع الواقعة في منطقة الدراسية. في حين ان اطلاق تصاريف اكبر من 340 متر مكعب /الثانية  ادت الى انغمار الضفاف بالمياه لانها تعدت المنسوب الطبيعي للنهر. واعطت نتائج محاكاة النموذج ثنائي الابعاد  وصفآ دقيقآ لتوزيع السرع ومستويات  المياه ، كما انها كانت أكثر دقة وحققت قيمآ أكثر قبولا للمؤشرات الاحصائية ,(الجذر التربيعي للخطا)كان 0.095 بينما معامل التحديد كان 0.99 بينما تلك القيم لنموذج الاحادي البعد مساويل 0.17 للجذرالتربيعي و 0.097لمعامل التحديد. وأجريت سلسلة من القياسات الميدانية لجمع البيانات اللازمة و المستخدمة لمحاكاة نموذج نقل الرواسب الذي امتد من 2019 شباط/فبراير إلى 2019 تموز/يوليه. وشملت  النماذج المستخرجة عينات  رسوبيات من الضفاف وقاع النهر وعينات من الرواسب العالقة  . ثم أجريت عدة فحوصات مختبرية للحصول على قيم التركيز للرواسب العالقة وتحليل الرواسب من قاع النهرلتحصيل على منحنيات توزيع لدقائق تربة.وأجريت عمليه المعايرة والتحقق للنموذج الذي يحاكي انتقال الرواسب عن طريق اختبار قيم مختلفة للحد الأقصى للعمق المتراكم للرواسب على طول النهر ولفترة محددة.وذلك باستخدام الرصد المساحي لمقاطع العرضية  للنهر للسنة 2012 وتم محاكاته لفتره أربع سنوات. وقد قورنت المقاطع العرضيةبالمقاطع المقاسة في  سنة 2016 . وكانت معدل الجذر التربيعي للخطأ مساوي ل 0.035  ومعامل التحديد  كان 0.98  مما يشير الى نتائج جيدة  . وكانت القيمة المناسبة لاعظم عمق  للرواسب  لشهر        واحد 4.5 سم ولاربع سنوات كانت متران.من محاكاة انتقال الرواسب لمدة سنة  أظهرت ان الحد الأقصى لتراكم الرسوبيات كان 0.5 م وتقع بالقرب من المقطع العرضي رقم واحد. تقع بالقرب من ناظم الغراف الرئيسي في محطه م58200 ، وعمق الأدنى  لتراكم الرسوبيات يقع في المقطع العرضي رقم 24 في محطة رقم 100 م بالقرب من مدينة الحي بعمق مساوي ل 2.5 سم. وفي حين تتراوح قيم تصريف الرواسب بين 1009 إلى 70 طن/يوم. وعمق التاكل يتراوح بين 2 إلى 4 سم ، وتقع في وسط ومصب النهر بين المقطع العرضي رقم 9 والمقطع العرضي رقم 19  وايضا تحصل نحر في مقطع الذي يقع اسفل ناظم الحي.مقطع رقم 23 في محطة رقم م160.وتشير نتائج التنبؤ بالكمية الفعلية لتراكم الرواسب في النهر اثناء فترة أخذ العينات ، وهي فترة خمسة أشهر إلى ان موقع الحد الأقصى لتراكم الترسبات كان منبعه في المحطة 58200 م بعمق يساوي 21 سم وكان الحد الأدنى لعمق الرواسب المتراكمة 1 سم في المحطة 100. وتراوحت تصريفات الرواسب بين 415 إلى 30 طن/يوم. كما تراوحت أعماق التعرية بين 1 إلى 3 سم ، وتقع  ايضا بين المقطع العرضي رقم 9 والمقطع العرضي رقم 19  وايضا يحصل نحر في مقطع الذي يقع اسفل ناظم الحي .ان نتائج محاكاة  نموذج  نقل الرواسب في ظروف مختلفة من الجريان من 90 إلى 350 متر مكعب/ثانية  ولفترة شهر واحد, قد اعطي قيمآ لعمق تغيرالقاع الذي تراوح بين7 سم إلى-2.6 سم وبينما قيم تصاريف الرسوبيات تراوحت من 19 إلى93 طن/يوم.أفضل قيمة جريان يدخل النهر الذي أعطي الحد الأدنى لتراكم الرواسب كان 290-300 مترمكعب/ثانية  مع اكبر  عمق رسوبي له مساوي ل 3 سم والتصريف الرسوبي تراوحت من 19 إلى 50 طن/يوم بينما افضل تصريف الذي قلل من خطر تعرية كان 190-200متر مكعب /ثانية مع اكبر عمق تعرية مساوي ل 2 سم تم اختبار قيم مختلفة من معامل الخشونة لاقتراح القيمة المناسبة لمعامل مانينغ الذي يحد من عملية الترسيب في المقاطع العرضية المحددة. كان الحل يقترح لتجنب تراكم الرواسب ضمن المجرى  النهر حيث ان  تبطينه بالخرسانة ذو قيمة خشونة مساوية ل 0.015 في مقاطع الذي يحدث فيها ترسيب قد قلل الترسيب في النهر بنسبة 43-92%. بينما تبطين المقاطع الذي يحدث فيها تعرية بمادة ذو معامل خشونة مساوي ل  0.028 ,تحشيةالحجرية في أي مكان يحدث فيها التاكل قد قلل التآكل بنسبة %92-96                                                                                                            .ومن الجدير بالذكر ان الطالبة نشرت بحثين الأول عنوانه  One and Two- Dimensional Hydraulic Simulation of a Reach in Al-Gharraf River  في مجلة journal of Engineeringوالثاني عنوانه Simulation of Sediment Transport in the Upper Reach of Al-Gharraf Riverفي مجلة عالمية سويسرية من مستوعبات سكوبس Materials science Forum هذا وقد نالت  الطالبة على تقدير جيدجداً.
رسالة الماجستير للطالب وسام سامي مفتاح الجاسم في قسم هندسة الموارد المائية
تم انجاز رسالة الماجستير للطالب وسام سامي مفتاح الجاسم في قسم هندسة الموارد المائية بكلية الهندسة/جامعة بغداد عن رسالتة الموسومة (تأثير المراشنة على خواص التربة الجبسية المعالجة بالاسمنت ) بإشراف أ.م. ميسم ثامر مطشر وذلك في يوم الاربعاء الموافق  19/2/2020 وفي قاعة الدكتورنجيب خروفة في كلية الهندسة.وكانت اللجنة العلمية للمناقشةأ. كاظم نايف كاظم      رئيساأ.م.د. باسم شبع عبد   عضواأ.م.د.ثامر احمد محمد  عضواوبعد امتحان لجنة المناقشة الطالب في محتويات الرسالة, قررت اللجنة منح الطالب شهادة الماجستير في هندسة الموارد المائية /هندسة الهيدروليك.تضمنت الرسالة  تقييم تأثير المراشنة على القنوات الجبسية المستقرة بنسبة 10% من الاسمنت ، تم اجراء تجارب في المختبر الهيدروليك بجامعة بغداد على قناة مختبرية للكشف عن تأثير دورات الترطيب والتجفيف على السلوك الفيزيائي والهيدروليكي للترب الجبسية ، والتي يتضمن سرعة التسرب ومحتوى الماء ومحتوى الجبس والانجراف وتدرج التربة وخشونة سطح القناة في كل دورة (10 أيام ترطيب و 10 أيام من التجفيف). تم احضارتربة الجبسية ذات محتوى جبسي 65% من المنطقة القريبة من بحيرة ساوة/ محافظة المثنى و استغرق العمل المختبري لهذه الدراسة 150 يوما ؛ وشملت مجموعتين متوازيتين ومنفصلتين من التجارب. تشمل المجموعة الأولى من التجارب على استخدام صندوق الرشح  لقياس سرعة التسرب ومعدل الرشح ومحتوى الرطوبة ومحتوى الجبس ، ويحتوي على أربع عينات. عينتان من التربة غير المعالجة ؛ يتعرض أحدهم لنظام المراشنة (8 دورات). أما بالنسبة للعينات الأخرى ، فقد تم خلط التربة بالإسمنت بنسبة 10٪. تعرضت واحدة من هذه العينات أيضا لنظام المراشنة . في هذا الجزء ، تم حساب معدل الترشيح عن طريق قياس كمية الماء التي تترشح من هذا الأنبوب (المثبت في كل نموذج) بمرور الوقت. في المجموعة الثانية من التجارب تتضمن قناة مختبرية ذات تربة جبسية من أجل تحديد معدل الانجراف في التربة الجبسية وتدرج التربة ومعامل ماننج وخشونةالقناة السطحية بواسطة (جهاز SPG) في كل دورة. تتكون قناة المختبر من مرحلتين من العمل: الأولى للتربة غير المعالجة (عمق 10 سم ، تشغيل 4 دورات) والثانية للتربة الممزوجة بالإسمنت بنسبة 10 ٪ (خليط 5 سم فوق التربة 5 سم ، 4 دورات أيضًا).نستخلص  ان نظام المراشنة يقلل من  تأكل القناة حوالي 57 ٪ للتربة غير المعالجة ، و 82 ٪ للتربة المعالجة ، وفي حالة الرشح ، تنعكس النتائج بالكامل ، حيث يزداد معدل الرشح داخل التربة  بنسبة  13.8 ٪ للتربة غير المعالجة ويقل  بنسبة 79.1 ٪ للتربة المعالجة . نظام المراشنة  أدى إلى تدرج خشن في التربة. يقلل نظام المراشنة من قابلية ذوبان الجبس في التربة بنسبة (39٪) و (45.6٪) في حالة تربة الجبس غير المعالجة والمعالجة ، على التوالي. نضام المراشنة  يزيد  من قيمة معامل مانينغ للتربة غير المعالجة وفقًا لتدرج التربة ، ثم في حالة التربة المعالجة ، لم يلاحظ تغير في قيمة معامل مانينغ خلال أربع دورات ، حيث كان 0.0135. من نتائج هذه الدراسة ، لا يوصى بتطبيق نظام المراشنة  في حالة القناة غير المبطنة أو التربة غير المعالجة لأن سرعة التسرب وذوبان الجبس تزداد عند تطبيق هذا النظام.
قسم هندسة الموارد المائية يعقد حفل استقبال لطلبة المرحلة الاولى
 عقد قسم هندسة الموارد المائية اليوم الاثنين حفل لاستقبال طلبة المرحلة الأولى وترأس اللقاء السيد رئيس القسم أ. م .د. حيدر عبد الأمير الثامري  ولجنة استقبال الطلبة  وعدد من اساتذة القسم.تم خلال الحفل  عرض تقديمي تناول نبذة عن تاريخ القسم وتعريف الطلبة بالأساتذة ورؤساء القسم السابقين  منذ تاسيسه واهم إنجازات القسم العلمية واسهامه في خدمة بلدنا العزيز ضمن الاختصاص. ثم قدم السيد رئيس القسم  شرح موجز عن نظام المقررات الجديد الذي تم تطبيقه في العام الحالي لطلبة المرحلة الاولى ...في الختام تم الترحيب  بالطلبة متمنيا لهم التوفيق والنجاح ان شاء الله. 
عمل تطوعي بجهود الاساتذة و الطلبة
عمل تطوعي بجهود الاساتذة و الطلبةاقيمت حملة تطوعية في قسم هندسة الموارد المالية من قبل طلبة قسم هندسة الموارد المائية واساتذته يوم الخميس الموافق 6/2/2020 تم من خلالها ترتيب لوحات تعليمية و ارشادية في التخصص الهندسي لاغراض تعليمية ارشادية.
تدريسي في كلية الهندسة ينشر بحثا في مجلة علمية عالمية
  نشر المدرس الدكتور زهير كاظم جهان كير التدريسي في قسم هندسة الموارد المائية في كلية الهندسة بجامعة بغداد بنشر بحث في مجلة علمية (Journal of Mechanics) ضمن مستوعبات كلاريفيت و سكوبس العالمية معتمدة من وزارة التعليم العالي والبحث العلمي. حيث ان عنوان ورقته البحثية الموسومة   "علاقة مقاومة القص-قوة الترابط الهيكلية لتجمعات الحبيبات السيليكونية " بتأريخ 02/12/2019 والتي تتلخص بمايأتي: يتم البحث عن المواد  المكونة من السيليكون (Si) في التطبيقات الهندسية المختلفة بما في ذلك الهندسة المدنية والميكانيكية والكيميائية والمواد والطاقة والهندسة. تتمت معالجة السيليكون وثاني أكسيد السيليكون على نطاق واسع في الصناعات في شكل حبيبي، على سبيل المثال لتطوير مواد متينة من الخرسانة والصدمات والكسور والأجهزة البيولوجية والضوئية والميكانيكية والإلكترونية التي توفر مزايا كبيرة على التقنيات الحالية. نركز هنا على السلوك التأسيسي للمواد الحبيبية القائمة على Si تحت القص الميكانيكي. في الآونة الأخيرة ، من المعترف به على نطاق واسع في الابحاث السابقة أن الأصل المجهري لقوة القص في التجمعات الحبيبية يرتبط بقدرتهم على إنشاء شبكات متباينة الخواص (الهيكل) تشتمل على جسيم او جهات اتصال قوية تربط بين الجسيمات تحت تحميل القص. جهات الاتصال القوية تتعلق بعدد قليل نسبيا من الاتصالات التي تحمل أكبر من المتوسط التحميل الميكانيكي. ومع ذلك ، المعلومات حول كيفية تطور هذه التراكيب الداخلية في التجميعات القائمة على Si تحت التحميل الميكانيكية، وصلتها إلى قوة القص الكلية لهذه التجمعات نادرة في  الابحاث السابقة.باستخدام طريقة العناصر المنفصلة (DEM)، نقدم هنا نتائج حول كيفية تطوير التجميعات الحبيبية المستندة إلى Si قوة القص وبنية نسيجها الداخلية تحت تحميل الضغط شبه المحوري الثابت. بناءً على التحليل ، يتم تقديم علاقة تأسيسية بسيطة لقوة القص السائبة للتجمعات القائمة على نظام Si والمتعلقة بتباين نسيجها الداخلي في جهات الاتصال المحملة بشكل كبير. هذه النتائج يمكن أن تساعد في تطوير خصائص العلاقات-الهيكل النسيجي للمواد المستندة إلى Si  في المستقبل، والتي تنشأ في التركيب الداخلي المجهري.رابط البحث  على الانترنيت: https://doi.org/10.1017/jmech.2019.47 
مناقشة رسالة ماجستير في قسم هندسة الموارد المائية
في يوم الاثنين الموافق 2/12/2019 تم مناقشة الطالب علي حامد عبدالله في قسم هندسة الموارد المائية بكلية الهندسة / جامعة بغداد وقد أشرف على إعداد الرسالة أ.م. صباح أنور داود المصرف في قاعة الدكتور نجيب خروفةوتألفت لجنة المناقشة من الاساتذة الافاضل: أ.م.د. حسام هادي علوان (رئيساً)؛ أ.م.د. باسم شبع عبد (عضواً)؛ أ.م.د. ميسون بشير عبد (عضواً). بعد امتحان لجنة المناقشة للطالب في محتويات الرسالة، قررت اللجنة منح الطالب شهادة الماجستيرتقييم احتفاظ المياه على انتاجية نبات الحنطة الشتوية تحت مختلف الاضافات المائيةالمستخلصيعد عجز المياه للنبات من أكبر القيود لنموه وانتاجه الأقصى، حيث أن حفظ المياه وتقليل متطلبات الري يعد الهدف لزيادة كفاءة استخدام المياه. تعد تقنية حجز المياه تحت سطح التربة، تكنولوجيا ري جديدة تعمل بشكل كبير على تقليل متطلبات الري وتوفير محتوى رطوبي ضمن منطقة العمق الجذري للنبات وحفظ المياه المضافة.ان الهدف الرئيس لهذا البحث هو تحسين غلة المحصول وكفاءة استخدام المياه الحقلية وانتاجية المياه الاقتصادية لمحصول الحنطة الشتوية بواسطة حصد مياه الري والمطر، وتقليل وحفظ مياه الري المضافة من خلال تثبيت حوض الاغشية تحت المنطقة الجذرية للنبات.أجريت دراسة التجربة في حقل مفتوح ضمن بلدة جويبة الواقعة شرق مدينة الرمادي في محافظة الانبار/ العراق. تم استخدام ثلاث قطع زراعية، تمثل ثلاث تطبيقات، مساحة كل قطعة 40 م2. تم تثبيت حوض الاغشية في القطعة الأولى والثانية، بينما تركت القطعة الثالثة بدونه. زرعت الحنطة الشتوية في شتاء 2018-2019 في تربة طينية غرينية. كانت المياه المضافة من الامطار في جميع القطع مع منظومة الري بالرش بمثابة الري التكميلي في القطعة الأولى.اجريت قياسات كل من المحتوى الرطوبي للتربة، عمق مياه المطر، العمق الجذري، نمو النبات والبيانات التي تخص طريقة الارواء لجميع القطع الزراعية، علاوة على ذلك فان الجدولة الدفترية لطريقة الري قد اتبعت في القطعة الأولى.اظهر تحليل النتائج المتحصلة: أن القيمة التراكمية للاستهلاك المائي للمحصول في القطعة الاولى والتي تم حسابها بالطريقة المباشرة وبدون تعرض النبات لأي اجهاد رطوبي تساوي 177 ملم، حيث كانت اقل من تلك القيم التي تم حسابها بالطرق الأخرى بنسبة 151%. العمق الكلي الذي تم اضافته من مياه الري والمطر للقطع الأولى والثانية والثالثة، كانت 280 ملم و220 ملم و220 ملم، على التوالي. معامل الاجهاد المائي للتربة في القطعة الثانية كان اقل من القطعة الثالثة بنسبة 36%, بينما نسبة توفر الرطوبة في القطعة الثانية كانت اعلى من القطعة الثالثة بنسبة 14%.في القطعة الأولى تم إضافة مياه بنسبة 27% اعلى من القطعة الثانية. أدى ذلك الى ان غلة المحصول وكفاءة استخدام المياه الحقلية قد تحسنت في القطعة الأولى بنسبة 49% و16% على التوالي. وفقا لذلك فان قيمة إنتاجية المياه الاقتصادية في القطعة الأولى قد تحسنت بنسبة 16% مقارنة مع القطعة الثانية. من ناحية أخرى ولنفس عمق المياه المضافة في القطعة الثانية والثالثة، فان كفاءة استخدام المياه الحقلية وإنتاجية المياه الاقتصادية قد تحسنت في القطعة الثانية مقارنة مع القطعة الثالثة بنسبة 25%.مقارنة مع الحقول المجاورة ولنفس المحصول فان حفظ مياه الري المضافة في القطعة الأولى كان مساويا 61% مع قيمة غلة المحصول في القطعة الاولى اعلى بنسبة 49%.ان تثبيت حوض الاغشية ضمن منطقة العمق الجذري، قد احتوى رطوبة التربة والأسمدة والمواد المغذية. 
التدريسي الدكتور زهير كاظم جهان كير ينشربحث في مجلة علمية ضمن مستوعبات سكوبس العالمية
  نشر المدرس الدكتور زهير كاظم جهان كير التدريسي في قسم هندسة الموارد المائية في كلية الهندسة بجامعة بغداد ينشربحث في مجلة علمية (Geotechnical and Geological Engineering) ضمن مستوعبات سكوبس العالمية معتمدة من قبل وزارة التعليم العالي والبحث العلمي. حيث ان عنوان ورقته البحثية الموسومة   "حقول الإزاحة الموضعية  خلال الاحتكاك بين الأسس والحبيبات المتعرضة للاحمال الدورية:تجارب و محاكاة" بتأريخ 07/10/2019 والتي تتلخص بمايلي: التربة تواجه ظروف التحميل الدورية في الموقع ، على سبيل المثال أثناء الزلازل وفي تسلسل بناء الطرق. التحقيقات على حقول الإزاحة الموضعية المحلية  لحبوب التربة و أنماط فشلها تحت ظروف التحميل الدورية نادرة نسبيا في الدراسات السابقة. في هذا الدراسة، تم اختبارحقول الإزاحة الموضعية المحلية لطبقة التربة الرملية الكثيفة المتفاعلة اسفل الُأُسس الشريطية باستخدام طريقتين التجارب والمحاكاة.تم تسليط ثلاثة أنواع شائعة الاستخدام من الحمل الدوري الُأُسس الشريطية.  تم استخدام تقنية الصورة الجسيمية الرقمية للحبيبات (DPIV) لقياس حقول الازاحة  المحلية في التربة ، وإلى فهم تطور سطوح الفشل في الرمل تحت ظروف التحميل الدورية. تم التحقق من صحة تشوهات أسفل الأساس الموضعية النظرية الناتجة من تحليل العناصر المحددة مع مخرجات الصورة الجسيمية الرقمية للحبيبات التجريبية وذلك حيث يتم تغذية العلاقات التأسيسية من التجارب العملية كمدخلات في عمليات محاكاة العناصر المحددة FEM. ولأغراض المقارنة، تمت دراسة حالة الاساس التي تعرضت لظروف التحميل شبه الثابت. بشكل عام ، أظهرت النتائج درجة جيدة من التوافق بين نتائج التجارب والمحاكاة التي أجريت هنا.بشكل عام ، تم ملاحظة حقول الإزاحة ضحلة نسبيًا ولكن أوسع تحت التحميل الدوري للاساس، مقارنةً بمجال اختبار الحمل شبه الثابت. تتركز مناطق الدوامة بدرجة عالية على اسطح القص في الوسط الرملي تحت الحمل الاقصى. يساهم البحث في فهم جديد لحقول الإزاحة ذات النطاق المحلي وارتباطها بقدرة التحمل للاساس في ظل بيئات التحميل الدورية.رابط البحث  على الانترنيت: https://link.springer.com/article/10.1007%2Fs10706-019-01088-5  
مناقشة رسالة الماجستير ” تقييم منظومة مهرب صليبات الفيضاني “ في قسم الموارد المائية
    تم انجاز رسالة الماجستير حسين شنان عبد الحسين في قسم هندسة الموارد المائية بكلية الهندسة/جامعة بغداد في قاعة الدكتورنجيب خروفة في القسم عن رسالته الموسومة ”تقييم منظومة مهرب صليبات الفيضاني“ وقد اشرف على إعداد أ.م.د. حيدر عبد الامير خضير الثامري  في يوم الاثنين المصادف 25/11/2019 وتألفت لجنةالمناقشة من: أ.د. رياض زهير جويعد (رئيسا) أ.د. فاضل محمد ظاهر (عضوا) أ.م. صباح انور داود  (عضوا) بعد امتحان لجنة المناقشة الطالب في محتويات الرسالة, قررت اللجنة منح الطالب شهادة الماجستيرملخص بحث الطالب هو كالآتي: تم تطوير نموذج هيدروليكي أحادي الأبعاد باستخدام برنامج HEC-RAS 5.03 لمحاكاة التدفق ومستويات المياه في أنهار الفرات والعطشان والسبيل ضمن منطقة الدراسة. وقد اقترحت تطويرات لزيادة استيعابية تصريف  نهري الفرات والسبيل وقناة الصليبات ضمن مدينة السماوة لمنع التهديدات المتوقعة من الفيضانات. لا حاجة إلى تطوير نهر العطشان. وقد طُبقت اربعة حالات لدراسة الحالة الراهنة  على نهر الفرات وكلا ذراعيه وقناة الصليبات ضمن مدينة السماوة. وعلاوة على ذلك، تم تنفيذ حالتين لزيادة استيعابية التصريف لنهري الفرات والسبيل وخمسة سيناريوهات لزيادة استيعابية قناة الصليبات. وبالإضافة إلى ذلك، أُجريت أربعة حالات للتحقق من سعة خزان منخفض الصليبات والوقت اللازم لملء هذا الخزان.وأظهرت النتائج أن استيعابية التصريف في ظل الظروف الحالية لأنهار الفرات والعطشان والسبيل هي 750 و500 و500  م3/ث  على التوالي داخل مدينة أسامة. ومن ناحية أخرى، تبلغ استيعابية التصريف في ظل الضرف الحالي لقناة الصليبات 90 م3/ث في ظل  حالة الجريان الغير مستقر.  وتظهر نتائج التطويرات التي تم تطبيقها أن استيعابية  تصريف نهري الفرات والسبيل يمكن أن تصل إلى 1200, 1300 م3/ث على التوالي. ومن ناحية أخرى، أظهرت نتائج التطويرات أن الحد الأقصى للتصريف يمكن أن يمر عبر قناة الصليبات هو 400 م3/ث عند إعادة تصميمه على أساس تصريف 400 م3/ث جنبا إلى جنب مع خفض منسوب قعر القناة بمقدار متر واحد.  
مناقشة رسالة ماجستير في قسم الموارد المائية
في يوم الاثنين  الموافق 18/11/2019 تم مناقشة الطالب ماجد روضان حسين في قسم هندسة الموارد المائية بكلية الهندسة / جامعة بغداد وقد أشرف على إعداد الرسالة أ.م.د. باسم شبع عبد في قاعة الدكتور نجيب خروفةوتألفت لجنة المناقشة من الاساتذة الافاضل: أ.م.د. قاسم حميد جلعوط (رئيساً)؛ أ.م.د. حيدر عبدالامير الثامري (عضواً) ؛ أ.م.د. ميسون بشير عبد (عضواً). بعد  امتحان لجنة المناقشة للطالب في محتويات الرسالة، قررت اللجنة منح الطالب شهادة الماجستير بدرجة امتياز محاكاة وتقييم المياه الجوفية شرق محافظة ديالىالمستخلصتقع منطقتي مندلي وقزانية في شرق محافظة ديالى بالقرب من الحدود العراقية الإيرانية، وقد تم اختيارهما كمناطق دراسة حيث تعاني المنطقتان من نقص مصادر المياه السطحية. تبعا لذلك، أصبحت المياه الجوفية المصدر الرئيسي للمياه لسكان هذه المناطق.تهدف هذه الدراسة إلى محاكاة تدفق المياه الجوفية في هذه المناطق باستخدام برنامج رقمي لتحديد أفضل استخدام للمياه الجوفية من خلال تحديد المسافة المثالية بين آبار الحفر وتحديد ظروف التشغيل المناسبة. علاوة على ذلك، لتقييم جودة المياه الجوفية وتقييم مدى ملاءمتها للاستخدامات البلدية والري.تم استخدام برنامج نظم المعلومات الجغرافية ونمذجة المياه الجوفية لتطوير النموذج المفاهيمي الذي يحاكي تدفق المياه الجوفية في طبقات التربة في منطقتي الدراسة، مندلي وترساق الغرينيتان. تم جمع بيانات الآبار من الهيئة العامة للمياه الجوفية التي استخدمت لإنشاء نموذج متين لمناطق الدراسة، والتي تمثل الطبقات والتكوينات الجيولوجية. بعد ذلك تم تحديد معامل التخزين والعائد المحدد لهذه الطبقات مع معايرة النموذج في الحالة غير المستقرة. علاوة على ذلك، تم التحقق من نتائج النموذج من خلال مقارنة قيم منسوب المياه التي تم الحصول عليها باستخدام النموذج مع القياسات الميدانية لآبار المراقبة.تم وضع ثلاثة سيناريوهات لتحديد أفضل مسافة تفصل بين الآبار وأفضل وقت تشغيل للضخ. من نتائج نموذج المحاكاة، وجد أن السيناريو الأول على مسافة 500 متر يتسبب في انخفاض كبير في منسوب المياه الجوفية مما يؤدي إلى تجفيف طبقة التخزين الرئيسية للنموذج في أقل وقت للتشغيل. في السيناريو الثاني، تم اختبار مسافة 1000 متر، وكان الانخفاض في منسوب المياه الجوفية في الحالتين الأولى والثانية بوقت تشغيل قدره 6 و12 ساعة يوميًا على التوالي ضمن الحدود المقبولة. في السيناريو الثالث، بمسافة الفصل 1500 متر، وجد أن انخفاض منسوب المياه الجوفية لجميع الحالات يقع ضمن الحدود المسموح بها، لكن التدفقات الناتجة من السيناريو الثالث كانت منخفضة بشكل كبير، ولم تلبي الطلب. لذلك تم اقتراح واعتماد خيار وقت التشغيل 12 ساعة / يوم والمسافة الفاصلة 1000 متر بين الآبار كأفضل خيار يوفر المرونة للمزارعين لتحديد عدد أكبر من الآبار ذات الإنتاجية المناسبة.تم إجراء العديد من القياسات الميدانية على مدار فترة تسعة أشهر. وكذلك التجارب المتعددة التي تم تنفيذها في المختبر لاختبار عينات المياه الجوفية. تظهر نتائج تحليل عينات المياه في منطقة مندلي الغرينية أن المياه الجوفية تحتوي على تركيزات عالية نسبيًا من العناصر القابلة للذوبان في الماء والتي تتجاوز الحدود المسموح بها. لذلك، يمكن استخدام المياه لأغراض الشرب مع الأخذ في الاعتبار المعالجة البسيطة قبل الاستخدام، في حين أنه يمكن استخدامه مباشرة لاستخدام الري. كما، أظهرت نتائج عينات تحليل المياه في منطقة ترزاق الغرينية أن العناصر القابلة للذوبان في الماء تجاوزت المستويات المقبولة، حيث لا يمكن استخدام المياه الجوفية مباشرة للأغراض المنزلية أو الزراعية. حيث يتطلب الماء معالجة واسعة لغرض استخدامها في الشرب. كذلك يمكن اختيار المحاصيل المقاومة للملوحة للزراعة مع الاستخدام المباشر لتلك المياه. 
مناقشة رسالة الماجستير " تحسين التربة الجبسية في القنوات الاروائية باستخدام البولي يوريثان" في قسم هندسة الموارد المائية
تم انجاز رسالة الماجستير للطالب أثير كرجي ابراهيم في قسم هندسة الموارد المائية في قاعة الدكتور نجيب خروفة عن بحثه الموسوم " تحسين التربة الجبسية في القنوات الاروائية باستخدام البولي يوريثان " وباشراف الاستاذ المساعد ميسم ثامر مطشر في يوم الأثنين الموافق 27/5/2019 وتتألف لجنة المناقشة برئاسة الأستاذ المساعد الدكتور حيدر عبد الأمير خضير وعضوية كل من الاستاذ المساعد الدكتور باسم شبع عبد والأستاذ المساعد الدكتور ثائر جبار مزهر. تهدف هذه الدراسة الى تقليل مشاكل التربة الجبسية في القنوات الأروائية وتحسينها باستخدام غطاء من مادة البولي يورثان. قام الباحث بجلب التربة الجبسية من محافظة كربلاء المقدسة وتم رصها داخل نموذج لقناة اروائية بأبعاد ٠ ١م طول و ٠ ٣ سم عرض و ٠ ٣ سم ارتفاع. تم اجراء بعض الفحوص المختبرية مثل نسبة الجبس واعظم كثافة جافة وتوزيع حجوم دقائق التربة وسمية مادة البولي يوريثان وكانت النتائج هي على التوالي ١ ٤ % و ٧ ١ (_ ^٣)متر⁄(نيوتن كيلو)والتربة كانت رملية ضعيفة التدرج ولايوجد تأثير سمي لمادة البولي يوريثان. استخدم الباحث نسب الغطاء مع نسب البولي يوريثان وكانت كالتالي: نسبة الغطاء ٥% مع نسبة ٦% من البولي يوريثان لمدة ٨ ٢ يوم ونسبة الغطاء ٥% مع نسبة ١٠% من البولي يوريثان لمدة ٥ ٤ يوم ونسبة الغطاء ٥% مع نسبة ١٢% من البولي يوريثان لمدة ٥ ٤ يوم ونسبة الغطاء ١٠% مع نسبة ٦% من البولي يوريثان لمدة ٥ ٤ يوم ونسبة الغطاء ١٠% مع نسبة ١٠% من البولي يوريثان لمدة ٠ ٦ يوم ونسبة الغطاء ١٠% مع نسبة ١٢% من البولي يوريثان لمدة ٥ ٤ يوم أضافة الى التربة الغير معالجة التي استغرقت ٦٠ يوم.تم حساب انهيارية التربة بواسطة حساب ارتفاع التربة بعد مرور الماء في القناة عن طريق تعيين نقاط على سطح التربة وحساب ارتفاعها مع الوقت. هذا التآكل كان مؤشر لحساب انهيارية التربة.كشفت النتائج ان افضل حالة هي نسبة الغطاء ٥% لنسبة البولي يوريثان٠ ١% والذي اعطى خفض التآكل بنسبة ٣ ٩ .٠ ٩ % بعد مرور ٠ ٦ يوم من التشغيل المستمر.
مناقشة رسالة الماجستير الموسومة” تطوير الاستيعابية الفيضانية لامتداد نهر دجلة بين سدتي الكوت والعمارة ” للطالبة ميسم سالم عباس في قسم هندسة الموارد المائية
   تمت في قسم هندسة الموارد المائية مناقشة رسالة الماجستير الموسومة:IMPROVING FLOOD DISCHARGE CAPACITY OF A REACH OF TIGRIS RIVER BETWEEN KUT AND AMARAH BARRAGESللطالبة ميسم سالم عباس واشراف الاستاذ الدكتور رياض زهير جويعد, إذ تكونت لجنة المناقشة من الأستاذ المساعد الدكتور حيدر عبدالامير خضير رئيساً وعضوية كل من الأستاذ المساعد صباح أنور داود والأستاذ المساعد الدكتور صادق عليوي سليمان وحصلت الطالبة على تقدير جيد جدا عالي  وكان المستخلص كالاتي:“بناء السدود على المجرى الرئيسي لنهر دجلة وروافده في إيران وتركيا خلال العقود القليلة الماضية بالإضافة إلى التغير المناخي وزيادة الطلب على المياه ساهم في تغيير نمط الجريان الطبيعي لنهر دجلة. نتيجة لذلك كمية التصاريف الفيضانية السنوية ومناسيب المياه وسرعة الجريان قلت بشكل ملحوظ في النهر . مما سمح بالترسيب وتراكم العوالق الرسوبية خلال تلك السنوات على طول النهر خصوصا في الجزء الجنوبي منه. الترسبات المتراكمة ادت إلى تقليل استيعابية نهر دجلة. تحت هذا الظرف، من المهم من تخمين السعة الحالية لاستيعاب الفيضان للنهر مع تعديل بعض المقاطع العرضية تحسبا للفيضان المستقبلي.هذه الدراسة تناولت اختبار سعة التصريف الحالية لامتداد نهر دجلة بين سدتي الكوت والعمارة على امتداد 250كم من النهر. هذا الامتداد يمتلك ست مخارج رئيسية (مأخذ) واثنين مداخل رئيسية (روافد). أثنى عشر جزرة وسطية واثنان جزرات جانبية كانت قد تطورت في ذلك الامتداد من النهر والتي تشكل عائق أمام الفيضان المتوقع. الاختبار تضمن محاكاة السعة الحالية للامتداد باستخدام النموذج HEC-RAS. مائتان واربع وسبعون مقطع عرضي تم مسحها في عام 2012 استخدمت في المحاكاة. التصريف بين 400 و3300م3\ثا المطلق من مؤخر سدة الكوت افترضت كحدود في مقدم النهر. بعد ذلك تعديلات اخرى في امتداد النهر تم تطبيقها في النموذج تتضمن إزالة الجزرات الوسطية والجزرات الجانبية وتطوير المقاطع العرضية الضيقة لغرض زيادة استيعاب النهر لتصريف 3300م3\ثا، التصريف المسجل في سدة الكوت خلال فيضان عام 1988. عدة قيم لمعامل ماننك للمجرى الرئيسي والمجرى الفيضاني قد تم اختبارها. التحليل أظهر إن الفرق بين المحاكاة والحقيقة ممكن تقليصه إذا تم تقسيم امتداد النهر إلى جزئين التي لها معامل مختلف لماننك. الأول من سدة الكوت إلى علي الغربي والثاني من علي الغربي إلى سدة العمارة. النموذج قد تم معايرته باستخدام تصاريف 533 و800 و1025 و3000م3\ثا مطلقه من سدة الكوت خلال السنوات 2013 و1995 و1995 و1988 على التوالي، مع مناسيب الماء المتعلقة بتلك التصاريف في ثلاث محطات قياس على طول امتداد النهر. نتيجة المعايرة اظهرت بأن أقل معدل للجذر التربيعي للخطأ يساوي 0.095 ممكن استنتاجه عند استخدام معامل ماننك 0.026 و0.03 لكل من الامتداد من الكوت إلى علي الغربي ومن علي الغربي إلى العمارة، على التوالي، و0.03 للمجرى الفيضاني لكل الامتداد.النتائج بينت بان السعة الحالية لمجرى النهر للامتداد بين سدتي الكوت والعمارة تبلغ 400م3\ثا. وان  منسوب الماء يبقى دون 1م من السداد الفيضانية في حالة التصريف 1800م3\ثا من سدة الكوت مع عدم وجود تصاريف داخلة، و1700م3\ثا في حالة وجود تصاريف داخلة. امتداد النهر لا يمكنه استيعاب موجة فيضانية بتصريف 3300م3\ثا في كل الأحوال. تم استنتاج إن امتداد النهر تلقى كميات كبيرة من الترسبات خلال الفترة من 1988 إلى 2012 وان سعة النهر قد تقلصت بحدود النصف مقارنة بسعته في عام 1988.كانت نتيجة إزالة اثنا عشر جزرة وسطية واثنان جزرات جانبية بواسطة إعادة تشكيل المقاطع الحالية الى شبه منحرف سوف تقلل منسوب الماء إلى 20سم وفي هذه الحالة سيكون من الممكن امرار تصريف 1900م3\ثا  في حالة عدم وجود تصاريف داخلة وتصريف 1800م3\ثا في حالة وجود تصاريف داخلة  من الروافد. في حين، تطوير ثمان وخمسون مقطع عرضي التي تعيق الجريان، فان مناسيب المياه في امتداد النهر ستنخفض كمعدل إلى 20سم بالإضافة إلى 20سم نتيجة إزالة الجزرات الوسطية والجزرات الجانبية. في هذه الحالة، سيكون من الممكن امرار تصريف 2100م3\ثا من مؤخر سدة الكوت في حال عدم وجود تصاريف داخلة وتصريف 1900م3\ثا في حالة وجود تصاريف داخلة. تبين من خلال تطوير مئة واحد عشر مقطع عرضي إضافي سوف يكون من الممكن إمرار تصريف مقداره 3300م3\ثا في حال عدم وجود تصاريف داخلة و3000م3\ثا في حال وجود تصاريف داخلة.
مناقشة رسالة ماجستير في قسم الموارد المائية
مناقشة اطروحة الماجستير الموسومة:Management Of Sediments Within The Reservoir Of Mandala Dam" "للطالب مصطفى سهيل في قسم هندسة الموارد المائية تمت في قسم هندسة الموارد المائية مناقشة اطروحة الماجستير الموسومة:Management Of Sediments Within The Reservoir Of Mandala Dam" "للطالب مصطفى سهيل واشراف الأستاذ الدكتور رياض زهير الزبيدي, حيث تكونت لجنة المناقشة من الأستاذ المساعد الدكتور باسم شبع عبد رئيسا وعضوية كل من الأستاذ المساعد الدكتور حسن علي عمران  والأستاذ المساعد صباح أنور داود وحصل الطالب على تقدير جيدجداً  وكان ملخصها :خصائص تراكم الترسبات في خزان سد مندلي سد مندلي هو احد السدود الصغيرة في العراق والذي يقع على وادي حران كنكير على مسافة 3كم شمال شرق مدينة مندلي. يتكون سد مندلي من أربعة أجزاء رئيسية جسم السد ومأخذ القناة والمسيل المائي والمخرج السفلي. على مدى فترة سبع سنوات من التشغيل يفقد السد قدرتة على تخزين المياه للاغراض التي صمم من أجلها بسبب الرواسب المتراكمة في خزانة. وتبلغ كمية الرواسب المتراكمة 2.25 مليون متر مكعب حيث بلغ متوسط المعدل السنوي للترسيب خلال هذة الفترة حوالي 0.321 مليون متر مكعب وهذا يمثل أنخفاضا سنويا بنسبة 14.26% من السعة الخزنية الاصلية للسد. حاولت هذه الدراسة دراسة الخصائص الهيدروليكية وخصائص عملية الترسيب بما في ذلك أنماط السرع وتوزيع التراكيز وتغير طبقة السطح والحلول المقترحة لتقليل الرواسب داخل خزان بحيرة سد مندلي. تم أستخدام برنامج GIS لانشاء الخارطة الرقمية للخزان وبرنامج RMA2 لايجاد توزيع السرع وعمق الماء في الخزان ومن ثم استخدم برنامج SED2D لايجاد توزيع التراكيز وتغير طبقة السطح في خزان سد مندلي. تم أفتراض وفحص قيم مختلفة للتصاريف وتراكيز الترسبات كشرط حدودي عند مدخل البحيرة ومنسوب الماء عند مخرج بحيرة سد مندلي كشرط حدودي. كانت قيم التصاريف المفروضة هي200 و750 و1250 و1725م3/ثا. أظهرت النتائج أن التراكيز مرتفعة في أعلى الخزان ثم تبدأ بالنقصان تدريجيا باأتجاه المخرج من المسيل المائي. كان سمك الترسبات مرتفع جدا في منتصف الخزان بسبب الانخفاض الفوري في سرعة الماء في هذا الجزء يؤدي الى ترسيب عالي للرواسب. تظهر الاختلافات في التراكيز عندما يكون الحمل طين لمختلف التصاريف الواردة تبين أن تغيرات طفيفة جدا في التراكيز. تظهر نتائج التغير في سطح الخزان لسد الحجز في الجزء العلوي والسفلي من الخزان أن الترسيب العالي يحدث عندما يكون التصريف الوارد 200م3/ثا من الوارد 1725م3/ثا. أن ترسيب الرواسب في الجزء العلوي من الخزان عندما يكون طول المسيل المائي 200م و250م أعلى من طول المسيل المائي 100م و150م وذلك بسبب ارتفاع قمة المسيل المائي عند هذة الاطوال. أن كفاءة أنشاء سد الحجز لاسيما في الموقع 1 و2 لاتتمكن من مواجهة الترسبات في الخزان بسبب طوبوغرافية المنطقة لاتسمح بزيادة أرتفاع سد الحجز لحجز المزيد من الرواسب وكذل منحي الماء سوف يمتد ضمن الجانب الايراني. الموقع 3 من سد الحجز بطول 200م يمكن الاستفادة منة لمواجهة الترسبات في الخزان .حيث ان الرواسب المحجوزة في التصاريف القليلة كمعدل 45% وعند التصاريف العالية 33% من التراكيز الواردة. بينما بناء سد الحجز مع الممر ممكن ان يمرر رواسب بحدود 18% من التراكيز الواردة.
الدكتور زهير كاظم جهان كير يشارك في ندوة علمية حول التقنيات الحديثة المستخدمة في الهندسة الجيوتقنية
 .شارك المدرس الدكتور زهير كاظم جهان كير التدريسي في قسم هندسة الموارد المائية في كلية الهندسة بجامعة بغداد في الندوة العلمية التي عقدتها الجمعية العراقية لميكانيك التربة وهندسة الأسس بالتعاون مع كلية الهندسة الجامعة المستنصرية بتأريخ 17/04/2019.  وقد القى الدكتور زهير كاظم جهان كير محاضرة علمية حول التقنيات الحديثة المستخدمة في الهندسة الجيوتقنية وبالأخص قياس تشوه التربة خلال الاحتكاك بين الأسس الشريطية والرمل باستخدام برنامج قياس سرعة صورة الجسيمات (Particle Image Velocimetry) والتي تتلخص بمايلي:في تطبيقات الهندسة الجيوتكنيكية، لم يتم بعد التوصل إلى فهم دقيق لحقول الإزاحة الموضعية لحبيبات التربة وتشكّل سطوح الفشل اسفل  الُأُسس الشريطية المستندة على طبقات تربة مختلفة. تم استخدام العديد من الطرق النظرية والتجريبية  لقياس قدرة التحمل القصوى للتربة المتجانسة والطبقات  في الماضي، ولكن مع وجود مستوى كبير من الاختلافات اعتمادًا على مغلفات او سطوح الفشل للتربة المفترضة. قدرة التحمل القصوى للتربة تعرف بأنها قدرة التربة على الحفاظ على الحمل الأقصى المسلط على قاعدة الاُسس قبل انهيار التربة. يساهم هذا البحث في إحراز تقدم جديد على كل من الجهة التجريبية في مجال تأثير التفاعل(Interaction) بين الأسس الشريطية - التربة تحت ظروف الإجهاد المستوي باستخدام الصورة الجسيمية الرقمية للحبيبات (DPIV) لقياس حقول الازاحة الموضعية لحبيبات التربة واستخدامها لتوصيف سطوح الفشل لعدة مشاكل تفاعل الأسس – التربة. تم استخراج تأثيرات تداخل مسارات سطوح الفشل  للاُسس  آخذين بنظر الاعتبار خصائص طبقات الرمل وتحت التحميل الثابت. تم التحقق من صحة تشوهات أسفل الأساس الموضعية النظرية الناتجة من تحليل العناصر المحددة مع مخرجات الصورة الجسيمية الرقمية للحبيبات التجريبية. حيثما أمكن استخدمت حقول الإزاحة التي تم الحصول عليها باستخدام الصورة الجسيمية الرقمية للحبيبات في تحسين النظريات الموجودة لحساب قدرة التحميلية القصوى للأسس الشريطية الموضوعة على طبقات الرمل من أجل تحقيق دقة أفضل للتخمين.  وفرت المقارنات الحسابية النظرية والتجريبية التي تم تطويرها في هذا البرنامج البحثي أساسًا قويًا من حيث المنهجية والنتائج لتحليل مقاطع التربة المعقدة الأخرى في بيان التأثير المتبادل بين الأسس والأرض في المستقبل.وفي نهاية الندوة العلمية وزع رئيس الجمعية الاستاذ المساعد الدكتور مهدي عبيد كركوش الدروع التقديرية على المحاضرين واللجان العلمية والتحضيرية للندوة. هذا وحضر الحلقة اعضاء من الجمعية العراقية لميكانيك التربة وهندسة الأسس و باحثين مختصين وطلبة الدراسات العليا من مختلف جامعات العراق.        

Republic  of  Iraq

Ministry of Higher Education  &  Scientific Research

Supervision and Scientific  Evaluation Directorate

Quality Assurance and Academic Accreditation

International  Accreditation Dept.

Academic Program Specification Form For The Academic Year  2018-2019

           

 

 

 

Universitiy:   Baghdad

College :     Engineering

Number Of Departments  In  The College :     07   seven

Date Of Form  Completion :   1/10 / 2018

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAMME REVIEW

 

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Water Resources Engineering Program (WRE)3. Course title/code & Description
B Sc in Water Resources Engineering4. Program(s) to which it Contributes
Annual System:  There is only one mode of delivery, which is a “Day Program”.  The students are full time students and on campus.  They attend full day program in face-to-face mode.  The academic year is composed of 30-week regular subjects.  Each graduating student has to successfully complete 147 credits.  Each subject credit is one 50-minute lecture per week or 3 hours of laboratory work per week.  There is no on-line subject which may be used as supplementary material for the class room instruction.5. Modes of Attendance offered
26. Semester/Year
33157. Number of hours tuition (total)
20188. Date of production/revision  of  this specification

 

9. Aims of the Course

 

1.                                         1.  Graduate water resources engineers to serve in water resources sectors,     Agriculture, and other related private sectors.

2.                                        2.  Improving the teaching and administrative activities to meet international      accreditations standards and the mission of the department.

3.                                         3.  Improving the academic abilities of the faculty and attracting highly skilled       personnel.

4.                                         4.  Improving the abilities of management and technical supporting staff and       attracting the highly skilled for employment.

5.                                         5.  Optimizing the use of resources and potentials of the department.

6.                                         6.  Cooperating, exchanging academic programs, and participating with other      universities and academic centers in  developed countries.

7.                                         7.  Establishing viable applied research that generates knowledge for local and       foreign users.

 

10.   Learning Outcomes

 

Following a review of the ABET Criteria and the program objectives, it has been decided by the water resources department that the ABET Criteria (a – k) encompass the spirit of our vision.  Therefore, outcomes (a – k) were adopted as the WR POs.  The Department POs are:

a.       An ability to apply knowledge of mathematics, science, and engineering.

b.     An ability to design and conduct experiments as well as to analyze and interpret data.

c.      An ability to design a system, or components, or process to meet desired needs.

d.     An ability to function on multi-disciplinary teams (multi-disciplinary teams mean teams of individuals with similar educational backgrounds focusing on different aspects of a project as well as teams of individuals with different educational backgrounds).

e.      An ability to identify, formulates, and solves engineering problems.

f.       An understanding of professional and ethical responsibility.

g.     An ability to communicate effectively.

h.     The broad education necessary to understand the impact of engineering solutions in a global and societal context.

i.       A recognition of the need for and an ability to engage in life-long learning (this includes teaching students that the underlying theory is important because the technology changes, coupled with enhancing their self-learning ability).

j.       Knowledge of contemporary issues (this includes presenting students with issues such as the impact of globalization, the outsourcing of both engineering and other supporting jobs as practiced by modern international users).

k.     An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

 

 

 

Water Resources Engineering Programs develops the knowledge and skills that will enable students to:

 

·   Apply basic mathematical and scientific concepts for the description and solution of engineering problems.

·   Develop initial proficiency in water resources engineering disciplines.

·   Develop the ability to conduct experiments and critically analyze and interpret data.

·   Perform water resources engineering integrated design of systems, components, or processes by means of practical experiences (group projects).

·    Identify, formulate, and solve water resources engineering problems by using modern engineering tools, techniques, and skills.

·   Collaborate in group projects.

·   Develop written and oral communication skills of students through presentations of project results.

·   Acquire an appreciation for some of the ethical problems that arise in the exercise of the profession.

 

 

11. Teaching and Learning Methods

1.      Lectures

2.     Tutorials

3.     Homework and assignments

4.     Laboratory experiments

5.     Tests and examinations

6.     In-class questions and discussions

7.     Connection between theory and application

8.     Field trips

9.     Extra-curricular activities

10. Seminars

11. In- and out-class oral conversations

12. Reports, presentations, and posters

 

12. Assessment Methods

 

Program Outcome Assessment Techniques:

 

§  Survey of Alumni

§  The related committees in the department such as scientific-, student affairs, social committees

§  Employment trends of our graduates will be tracked, e.g., place of employment and job title, every year

§  Survey of Employers of Graduates will be given at least every year to determine if the POs are still relevant to the employers of our graduates

 

§  The POs themselves will be re-evaluated every few years first by the faculty and then with the Council Presidency Department. Informal review of the POs will occur in conversations with alumni.

 

Summary of Student Outcomes Assessment Techniques:

 

§  Alumni survey.

 

§  Co-op Employer evaluation data is obtained at the end of the student co-op experience from co-op employer surveys regarding student performance.

 

§  Student co-op evaluation data is obtained from students at the end of their co-op experience regarding the students’ perception of their performance.

 

§  Senior Exit Survey are given every year to determine how well students feel they have achieved the student outcomes.

 

§  Summary of student performance is gathered in the form of final grades of the water resources engineering courses.

 

§  Evaluation of student data, specifically of transcripts for each graduate, is analyzed for time to graduation and retention rate as well as performance in water resources engineering courses.

 

§  Embedded assessment is performed in every class, every year. Not all student outcomes are evaluated in every single class but a representative sample is chosen. This will be accomplished by assess student assignments, quizzes, examinations, laboratory reports, projects, and presentations.

 

§  Examinations, Tests, and Quizzes.

 

§  Extracurricular Activities.

 

§  Student Engagement during Lectures.

 

§  Responses Obtained from Students, Questionnaire about Curriculum and Faculty Member (Instructor).

 

 

 

 

 

 

 

13. Program Structure

 

The Department offers engineering programs leading to the degree of Bachelor of Science (B Sc), Mater of Science (M Sc), and Doctor of Philosophy (Ph D) in Water Resources Engineering).  The B Sc degree covers the general aspects of specialization in the field of water resources engineering, while the M Sc degree involves four different areas of specialization and these are Hydraulics, Irrigation and Drainage, Hydrology, and Hydraulic Structures.  The Ph D degree covers two main areas of specialization and these are Water Resources Engineering and Irrigation and Drainage Engineering.

The annual system of study is followed in the department for the (B Sc) undergraduate study. The study period is 4 years with 147 units distributed over the four years of study.

Table 1 shows the course curriculum for the B Sc degree in water resources engineering.

 

 

Table 1.  Course curriculum for the B Sc degree in water resources

engineering.

 

1st yearSubject

 

Units2nd yearSubjectUnits
101WRALArabic Language2210WRMAMathematics  II6
102WRMAMathematics I6211WRCOComputer Programming6
103WRCOComputer Programming6212WRSMStrength of Materials4
104WREMEngineering Mechanics6213WRCSComponents of Hydraulic Structures2
105WREDEngineering Drawing6214WRSUSurveying6
106WRESEngineering Statistics4215WRSPSoil Physics3
107WRMEMaterials Technology3216WRLRLand Reclamation3
108WREGEngineering Geology2217WRWMWater Quality and Treatment6
109WEIRIntroduction to Water Resources4218WRDFDemocracy and  Freedom2
110 WRENEnglish Language2219 WRENEnglish Language2
Total Sum

 

 

41 Total Sum40
 

 

 

 

 

 

3rd yearSubject

 

Units4th yearSubjectUnits
319WRHYHydrology4429WRDHDesign of Hydraulic Structures6
320WRSFSoil Mechanics and Foundation7430WRDIDesign of Irrigation Systems4
321WRIEIrrigation Engineering4431WRGWGround Water2
322WRIDIrrigation and Drainage Networks2432WRDEDrainage Engineering2
323WRFMFluid Mechanics7433WREPEngineering Project4
324WRSAStructural Analysis2434WRPMProject Management4
325WRDSDesign of Concrete Structures2435WRASAnalysis of Water Resources Systems4
326WREAEngineering Analysis3436WRDEDam Engineering4
327WRSCSoil Conservation2437WRAHElective Course/e Application n Hydraulics2
328WRNMNumerical Methods3438WREEEngineering Economy3
329WRENEnglish Language2

 

 

439WRECElective Course/ Water Quality Management3
 

 

 

440 WRENEnglish Language2
Total Sum38 Total Sum40

 

 

Table 2 shows the distribution of units of the undergraduate curricula among the various special areas included in the undergraduate study.

 

 

Table 2. Distribution of units of the undergraduate curricula.

 

StageUniversity requirementsBasic SciencesGeneral EngineeringMajor SpecializationSum
First41219641
Second412101440
Third2171938
Fourth2132540
Sum12245964159

 

 

 

 

 

 

 

 

 

14. Personal Development Planning

 

Actions to Improve the Program

 

Continuous improvement is the goal of the Department of Water Resources Engineering.  The curriculum of the department has been continuously updated to meet the needs of the field of work.  Meetings and discussion are usually held with employers of the graduates of the department in order to get acquainted with their needs and trying to incorporate those needs in the curriculum of the department. The following specific actions have either been successfully implemented or are in process ;

 

1.   Comprehensive changes in curriculum.

 

2.   Continuous improvement of faculty through training programs.

 

3.   Promoting a number of faculty members to higher scientific ranks.

 

4. Purchasing a number of laboratory equipment and measuring instruments.

 

5.     Purchasing a number of books for the library of the department.

6.   Purchasing a number of computers.

7.   Establishing computer network access by using LAN network of the Center of the University of Baghdad in the form of Wireless terminals available now in the Department.

8.   Employing a number of faculty, engineering, and technical staff.

9.   Setting up an increase in extra-curricular activities for students such as scientific conferences and seminars.

10.Reconstructing and rehabilitating class rooms and offices in the Department, as

well as services and infrastructure.

 

15. Admission Criteria

 

 

An applicant for admission to an undergraduate program of WRE in the Department of Water Resources Engineering – College of Engineering – University of Baghdad must satisfy the following minimum requirements:

 

1.   He / she should have an Iraqi secondary school certificate, or its equivalent, and majored in natural or technological sciences. The students must obtain a high rate qualifies for admission to engineering colleges.

 

2.   Acceptance is centrally controlled by the Ministry of Higher Education and Scientific Research ( MOHESR ).

 

3.     Application to the Department of Water Resources is made directly through the MOHESR and independently from the application to the college of engineering. The number of students accepted is limited to the number of seats available as decided by the College Council based on the capacity of resources of the Department.   The capacity plan of the Department of Water Resources in the last three years was 40 – 60 students.

4.   Also included a plan to accept the top students from Technical Institutes Foundation and the outstanding employees from state institutions and ministries.

 

5.   The applicant must submit the required documents within a specified period.

6.   An applicant who has graduated from a secondary school system outside Iraq must have completed twelve years of combined primary and secondary school studies from a recognized school. He/she is also required to provide an equivalency certificate from the Iraqi Ministry of Education.

Admission to the Department of Water Resources is highly competitive. As explained above, applicants are granted admission in accordance with an overall evaluation on the basis of their rating record, but only to the extent permitted by the maximum number of new admissions established for that academic year.

 

 

 

16. Key sources of Information about the Program

 

a.   Department page in the website of the college.

b.  Guide of the Department of Water Resources Engineering.

c.   College of Engineering Catalog.

d.  Minutes of some Committee meetings of the Department of Water Resources Engineering.

 

e.   Subjects portfolios for Water Resources Engineering subjects.

f.    Documentation Committee in the Department.

g.  Staff and students of the Department.

h.  Examinations Committee in the Department.

 

 

 

 

 

 

 

Learning Outcomes: Skills acquired by students and methods of measurement are shown in Table (3).

 

Table (3).   Skills acquired by the students and methods of measurement.

 

Acquired SkillsLessons through which Skills AcquiredMethod of Assessing the Skills
  1. An ability to apply knowledge of mathematics, science, and engineering
  • Use mathematics to solve engineering problems
  • Apply mathematics and engineering science in engineering matters, evaluation, planning, and engineering design
102WRMA, 106WRES, 210WRMA,  326WREA, 435WRASHome works and assignments, quizzes, and examinations

 

  1. An ability to design and conduct experiments as well as analyze and interpret data
  • Design and conduct experiments to verify the presence of engineering problems
  • Conduct experiments with different scales to obtain data simulated reality
103WRCO,105WRED,107WRME,213WRCS,211WRCO,214WRSU,215WRSP,217WRWM,320WRSF,323WRFM,438WREELaboratory experiments, writing reports, examination, and quizzes
  1. An ability to design a system, component, or process to meet desired needs within

realistic constraints such as economic, environmental, social, political, ethical,

health and safety, manufacturability, and sustainability

  • Determine the design requirements
  • Explain the selection of design parameters
  • Determine the possibility of multiple solutions for one design and demonstrate best choice for design
  • Clarify the functions of the final design to meet the requirements
213WRCS,322WRID,324WRSA,325WRDS,430WRDI,432WRDE,436WRDEHome works, reports, graduation projects, examinations, and quizzes
  1. An ability to function on multidisciplinary teams
  • Learn basic concepts related to collective action, such as leadership, cooperation, objectives, and results
  • Knowledge of basic concepts related to team disputes such as differences in attitudes, personal goals, dependency, and lack of participation
  • Learn basic concepts related to the management team such as managing effective meetings, listening skills, and positive communication, setting goals, and assess the level of progress
  • Clarify the ability to organize and good management of the project team with different specialties
109WRIR,322WRID,438WREEReports, graduation projects, extracurricular activities
  1. An ability to identify, formulate, and solve engineering problems
  • The ability to identify issues that can be resolved through engineering concepts and models
  • The ability to develop standards and specifications with solutions and to identify the determination of issues
  • The successful application of engineering techniques to solve engineering problems
322WRID,435WRAS,438WREE,439WREC,437WRAHHome works, quizzes, and examinations
  1. An understanding of professional and ethical responsibility
  • Understanding engineering profession and responsibility
  • Knowledge of engineering responsibility in terms of risk assessment and safety, honesty and reliability, loyalty, and opposition in the workplace
109WRIR,434WRPM,438WREEMeetings and direct dialogues between students and faculty
  1. An ability to communicate effectively
  • Possess technical writing skills
  • Possess oral skills that make it able to effectively communicate his knowledge of technical information about the planning and engineering design
  • The ability to communicate complex ideas to engineering designs for people from outside
109WRIR, 438WREE,434WRPMReports, discussions, graduation projects, examinations
  1. The broad education necessary to understand the impact of engineering solutions

in a global and social context

  • Application of knowledge and engineering skills needed to deal with engineering issues and their impact on the cultural and ethical factors
  • Understand the positive and negative effects on the engineering and technology on society and how these effects associated with economic reality and political
109WRIR,216WRLR,322WRID,438WREEMeetings and direct dialogues between students and faculty
  1. A recognition of the need for and an ability to engage in life-long learning
  • Take advantage of the learning opportunities outside the formal classroom activities by attending professional lectures, seminars, and training courses
438WREEMeetings and direct dialogues between students and faculty
  1. Knowledge of contemporary issues
  • Identify and describe the challenges faced by engineers
  • Clarify important trends and issues in the field
  • Determine the potential applications of knowledge engineering in the design and analysis of contemporary engineering operations
438WREEMeetings and direct dialogues between students and faculty, discussions, and graduation projects
  1. An ability to use the techniques, skills, and modern engineering tools necessary for

engineering practice

  • The ability to use modern methods of analysis and design in modern engineering applications
  • The ability to use computer programs in engineering applications
103WRCO,211WRCO,435WRASLaboratory experiments, home works, quizzes, and examinations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

 

COURSE SPECIFICATION

This course is designed for prospective water resources engineers. The major focus of the course is on developing mathematical reasoning and thinking. This course encourages students to formulate conjectures and to explore mathematical concepts through investigations, use of technology, analytical and logical thinking. This course is designed to develop students’ problem solving, mathematical reasoning and communication skills that are essential to become water resources engineers. The mathematical content of this course will include topics from Functions, Limits and continuity, Trigonometric functions, differentiation, Matrices, applications of derivatives, Integration, Application of definite integrals, Transcendental functions and techniques of integrations.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources Engineering2. University Department/Centre
Calculus I , 102 WRMA

This course introduces the description of mathematical theorems, fundamentals of differentiation, integration and their application such as extreme values graph of the functions, calculation of areas and volumes.

The course is designed to present a background about trigonometric and fundamental of transcendental function.

3. Course title/code& Description
B Sc degree in Water Resources Engineering  (WRE)4. Program(s) to which it Contributes
Annual System; There is only one mode of delivery, which is a “Day program”. The students are full time students, and on campus. They attend full day program in face to face mode. The academic year is composed of 30 weeks regular subjects.5. Modes of Attendance offered
1st and 2nd / 2019-20186. Semester/Year
120 hours / 4 hours per week7. Number of hours tuition (total)
20188. Date of production/revision of  this specification
9. Aims of the Course

The aims are to enable candidates to:

1. develop their mathematical knowledge and oral, written and practical skills in a way which encourages confidence and provides satisfaction and enjoyment;

2. read mathematics, and write and talk about the subject in a variety of ways;

3. develop a feel for number, carry out calculations and understand the significance of the results obtained;

4. apply mathematics in everyday situations and develop an understanding of the part which mathematics plays in the world around them;

5. solve problems, present the solutions clearly, check and interpret the results;

6. develop an understanding of mathematical principles;

7. recognise when and how a situation may be represented mathematically, identify and interpret relevant factors and, where necessary, select an appropriate mathematical method to solve the problem;

8. use mathematics as a means of communication with emphasis on the use of clear expression;

9. develop an ability to apply mathematics in other subjects, particularly science and technology;

10. develop the abilities to reason logically, to classify, to generalise and to prove;

11. appreciate patterns and relationships in mathematics;

12.produce and appreciate imaginative and creative work arising from mathematical ideas;

13. develop their mathematical abilities by considering problems and conducting individual and co-operative enquiry and experiment, including extended pieces of work of a practical and investigative kind;

14. appreciate the interdependence of different branches of mathematics;

15. acquire a foundation appropriate to their further study of mathematics and of other disciplines.

10·Learning Outcomes
1.   To define and understand functions and how to graph these functions.

2.   To define and understand the trigonometric functions and how to graph these functions.

3.   To have the ability for dealing with limits and how to check the continuity of the functions.

4.   To determine the slope of a curve at a point and the rate of at which the function is changed.

5.   To know how to find the derivative of the functions and then using this derivative to find the extreme values of the functions.

6.   To be able to use the fundamental theorem of calculus to evaluate definite integral and calculate the areas, volumes, lengths of plane curves.

7.   To learn how to define, understand, graph and derive the transcendental functions.

8.   To be able to specify and apply the integral methods.

11.Teaching and Learning Methods
1.   Lectures

2.   Tutorials

3.   Home works

4.   Test and exams

5.   In class questions and discussions

6.   Connection between theory and applications

12. Assessment Methods

1.   Examinations, Tests and Quizzes

2.   Extracurricular activities

3.   Student engagement during lectures

4.   Home works

 

13. Grading Policy

1- Quizzes will be a (5-10) closed books and notes quizzes during the academic year. The quizzes will count 10% of the total course grade.

2- Tests, 2 to 6 times, and will count 20% of the total course grade.

3-  Extracurricular activities, this is optional and will count extra marks 1 to 5% for the students, depending on the type of activity.

4- Final Exam: The final exam will be comprehensive close books and notes, take place in June from 9:00 AM to 12:00 PM. The final will count 70% of the total course grade.

14. Course Structure
Assessment methodTeaching MethodUnit model or Topic titleLos

Article 10

HoursWeek
(1-4) of article 12(1-6) of article 11Equation of Line and Circle13 theo

1 tutorial

1
(1-4) of article 12(1-6) of article 11Functions13 theo

1 tutorial

2
(1-4) of article 12(1-6) of article 11Absolute Value13 theo

1 tutorial

3
(1-4) of article 12(1-6) of article 11Trigonometric Functions23 theo

1 tutorial

4
(1-4) of article 12(1-6) of article 11Limits and continuity33 theo

1 tutorial

5
(1-4) of article 12(1-6) of article 11Slope of curve43 theo

1 tutorial

6
(1-4) of article 12(1-6) of article 11Differentiation Rules53 theo

1 tutorial

7
(1-4) of article 12(1-6) of article 11Derivative of Trigonometric Functions53 theo

1 tutorial

8
(1-4) of article 12(1-6) of article 11Chain Rule53 theo

1 tutorial

9
(1-4) of article 12(1-6) of article 11Applications of derivative53 theo

1 tutorial

10
(1-4) of article 12(1-6) of article 11Applications of derivative53 theo

1 tutorial

11
(1-4) of article 12(1-6) of article 11Applications of derivative53 theo

1 tutorial

12
(1-4) of article 12(1-6) of article 11Lopital,s Rule53 theo

1 tutorial

13
(1-4) of article 12(1-6) of article 11Fundamentals of Integration63 theo

1 tutorial

14
(1-4) of article 12(1-6) of article 11Fundamentals of Integration63 theo

1 tutorial

15
(1-4) of article 12(1-6) of article 11The definite integrals63 theo

1 tutorial

16
(1-4) of article 12(1-6) of article 11Area63 theo

1 tutorial

17
(1-4) of article 12(1-6) of article 11Volumes63 theo

1 tutorial

18
(1-4) of article 12(1-6) of article 11Length of Curve63 theo

1 tutorial

19
(1-4) of article 12(1-6) of article 11Surface Area63 theo

1 tutorial

20
(1-4) of article 12(1-6) of article 11Transcendental Functions73 theo

1 tutorial

21
(1-4) of article 12(1-6) of article 11Transcendental Functions73 theo

1 tutorial

22
(1-4) of article 12(1-6) of article 11Methods of Integration73 theo

1 tutorial

23
(1-4) of article 12(1-6) of article 11Methods of Integration73 theo

1 tutorial

24
(1-4) of article 12(1-6) of article 11Methods of Integration73 theo

1 tutorial

25
(1-4) of article 12(1-6) of article 11Conic sections73 theo

1 tutorial

26
(1-4) of article 12(1-6) of article 11Conic sections73 theo

1 tutorial

27
(1-4) of article 12(1-6) of article 11Conic sections73 theo

1 tutorial

28
(1-4) of article 12(1-6) of article 11Determinates73 theo

1 tutorial

29
(1-4) of article 12(1-6) of article 11Determinates73 theo

1 tutorial

30
 

15. Infrastructure

Textbook

George B. Thomas , Maurice D, Weir and Joil R. Hass (2010). “Thomas, Calculus” Twelfth Edition,

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

1-    Calculus: ( Ross L. Finney and George B. Thomas , 1989)

2-    Thomas’ Calculus: (George B. Thomas, Maurice D. Weir and Joel R. Hass , 2011, 12th Edition)

3-     Lectures notes of  Prof. Dr. Safa N. Hameed.

Special requirements (include forexample workshops, periodicals,IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship ,field  studies)

16. Admissions
Pre-requisites
Minimum number of students
67Maximum number of students
 17. Course Instructors

TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Computer Programs,211 WRCO

This course introduces and teaches the student many topics/issues related to computer programs. Topics covered:

1. Introduction to computer application

2. Computer component

3. Microsoft Windows

4. Microsoft Word

5. Microsoft Excel

6. AutoCAD

In this course, the student will: understand, know, be familiar and be able to deals with types and parts, devices, storage, input/output units of computer, and also content of drop-menus of programs mentioned above.

The course is designed to provide a background to higher level courses. The course is taught through 4 hrs per week, 2 theoretically and 2 practically at the Lab.

3. Course title/code& Description
 

B Sc degree in Water Resources Engineering (WRE)

 

 

4. Program(s) to which itContributes
Annual System ; There is only one mode of delivery, which is a “Day Program”. The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.5. Modes of Attendance offered
1st and 2nd Semester, Academic Year 2015 – 20166. Semester/Year
120 hrs. / 4 hrs. per week7. Number of hours tuition (total)
20188. Date of production/revision of  this specification
9. Aims of the Course
1.     Computing Fundamentals (Introduction to Computer Application):

1) Introduce the following:

a. Historical introduction,

b. Computer types: super computer, main frame,…

c. Computer Parts (soft and hard): monitor, keyboard, mouse, operating

system, applications, files,…

d. Devices inside the system unit of computer: mother board, power supply,

hard disk,…

e. Computer storage units: hard disk, floppy disk, flash disk,…

f. Input and output units: keyboard, scanner, monitor, speaker,…

g. Icons, files and folders (create new, rename, copy or moving, saving, …)

h. Items of control panel

2). Provide a background to higher level courses

 

2.     MS Word Program:

1) Introduce and learn the student how to deals with Word documents from all respects especially through drop-down menus along with their content/facilities; for example:

a. File Menu (create new document, open document, typing, saving and

printing document,….)

b. Edit Menu (find and replace any word(s) in document, ….)

c. View Menu (add header and footer, ….)

d. Insert Menu (insert page No., Diagram,….)

e. Format Menu (font, bullets, boarders,….)

f. Tools Menu (check spelling and grammar, search, …)

g. Table Menu (create and using tables, sort data, …)

2) Provide a background to higher level courses

 

 

3.     MS Excel Program:

1) Introduce and learn the student how to deals with Excel sheet from all respects especially through drop-down menus along with their content/facilities; for example:

a. File Menu (create new sheet, open sheet, save, printing,…)

b. Edit Menu (copy and paste, find, replace,…)

c. Insert Menu (cells, rows, columns, charts, function, …)

d. Format Menu (cells, rows, columns, sheet,…)

e. Tools Menu (spelling, search,…)

f. Data Menu (sort, filter, table,…)

g. Windows (hide, split, freeze,…)

2) Provide a background to higher level courses

 

4.      AutoCAD Program:

1) Introduce and learn the student how to deals with AutoCAD drawing from all respects especially through drop-down menus along with their content/facilities; for example:

a. File Menu (new drawing, save and save as, plot,…)

b. Edit Menu (copy and cut, paste, …)

c. Draw Menu (line, polyline, arc, circle, hatch, text,…)

d. Dimension Menu (linear, arc length, angular, baseline,…)

e. Modify Menu (mirror, offset, move, rotate, trim, filet,…)

2) Provide a background to higher level courses

 

10·Learning Outcomes

 

At the end of the class:

1. Regarding Computing Fundamentals (Introduction to Computer Application): the

student will:

a) Understand introduction history of computer

b) Know types and  parts of computer,

c) know and deals with devices inside the system unit of computer

d) Be familiar with storage and  input / output units in computer

e) Be able to deals with files, folders; also items in control panel

2. Regarding Word, Excel and AutoCAD, the student will be able to deals with

topics related to that program, and be familiar with the drop-down menus and

their content (mentioned above in Article 9 points 2, 3, and 4).

 

 

11.Teaching and Learning Methods
1.     Lectures.

2.     Homework and Assignments.

3.     Lab. (practical).

4.     Tests and Exams.

5.     In-Class Questions and Discussions.

6.     Connection between Theory and Application.

7.     In- and Out-Class oral conversation.

8.     Reports and Posters

12. Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Student Engagement during Lectures.

3. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member ( Instructor ).

 

13. Grading Policy

1. Tests, 10 Nos. and will count 50 % of the total course grade (30 % theoretical and 20 % Laboratory Work).

2. Final Exam:

The final exam will be comprehensive, closed books and notes and take place on June 2018. The final exam will count 50%  of the total course grade

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LOs

( Article

10 )

HoursWeek
1 – 3 of article (12)1-8 of

article (11)

Intr. to computer application14

2 the.

2 prac.

1
1 – 3 of article (12)1-8 of

article (11)

Computer component14

2 the.

2 prac.

2
1 – 3 of article (12)1-8 of

article (11)

Computer component14

2 the.

2 prac.

3
1 – 3 of article (12)1-8 of

article (11)

Microsoft Windows14

2 the.

2 prac.

4
1 – 3 of article (12)1-8 of

article (11)

Microsoft Windows14

2 the.

2 prac.

5
1 – 3 of article (12)1-8 of

article (11)

Microsoft Word24

2 the.

2 prac.

6
1 – 3 of article (12)1-8 of

article (11)

Microsoft Word24

2 the.

2 prac.

7
1 – 3 of article (12)1-8 of

article (11)

Microsoft Word24

2 the.

2 prac.

8
1 – 3 of article (12)1-8 of

article (11)

Microsoft Word24

2 the.

2 prac.

9
1 – 3 of article (12)1-8 of

article (11)

Microsoft Word24

2 the.

2 prac.

10
1 – 3 of article (12)1-8 of

article (11)

Microsoft Excel24

2 the.

2 prac.

11
1 – 3 of article (12)1-8 of

article (11)

Microsoft Excel24

2 the.

2 prac.

12
1 – 3 of article (12)1-8 of

article (11)

Microsoft Excel24

2 the.

2 prac.

13
1 – 3 of article (12)1-8 of

article (11)

Microsoft Excel24

2 the.

2 prac.

14
1 – 3 of article (12)1-8 of

article (11)

Microsoft Excel24

2 the.

2 prac.

15
1 – 3 of article (12)1-8 of

article (11)

Microsoft Excel24

2 the.

2 prac.

16
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

17
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

18
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

19
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

20
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

21
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

22
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

23
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

24
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

25
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

26
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

27
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

28
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

29
1 – 3 of article (12)1-8 of

article (11)

AutoCAD24

2 the.

2 prac.

30
 

15. Infrastructure

·        Excel Scientist and Engineering Cookbook

·        AutoCAD, Kyless

·        Notebook prepared by the instructor of the course

·        Collection of sheets of solved and unsolved problems and Exams questions

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

·        Laboratory work in the ( Computer Lab ) of the departmentSpecial requirements (include forexample workshops, periodicals,IT software, websites)
—-Community-based facilities

(include for example, guest

Lectures , internship field  studies)

16. Admissions
Prerequisite
Minimum number of students
60Maximum number of students
17. Course Instructors

 

 

 

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

  TEMPLATE FOR COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.

COURSE SPECIFICATION

College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources Engineering

 

2. University Department/Centre
Engineering Mechanics / 104WREM

This course introduces the fundamental principals of  engineering mechanics  covering the following topics:

1-Statics

-Basic concepts of mechanics;  vectors Newton’s Laws,  free body diagram

– Force systems, (action and reaction, principal of transmissibility, concurrent forces, rectangular components, moment, couple, resultant.

-Equilibrium; system isolation and free body diagram.

-Structure; plane trusses, method of joint, method of sections.

-Center of mass; centroids of lines, area, volume, centroids of composite bodies and figures.

-Friction; static friction, kinetic friction, friction angle.

-Moment of inertia; rectangular and polar moment of inertia, radius of gyration, transfer of axes.

2-Dynamics

-Kinematics of particles (velocity and acceleration); rectilinear motion plane curvilinear motion, rectangular coordinates, normal and tangential coordinates, polar coordinates, relative motion.

-Kinetics o particles (force, mass and acceleration); Newton’s second law, rectilinear motion, curvilinear motion.

Work and kinetic energy; work of linear spring, work on curvilinear motion, principle of work and kinetic energy, potential energy.

The course is designed to provide a background to higher level courses (strength of materials, structural analysis, reinforced concrete design etc..).

-The course is

taught through 4 hrs per week, 3 hrs theories,

1 hrs tutorial.

 

3. Course title/code & Description
B Sc degree in Water Resource Engineering      ( WRE )4. Program(s) to which it Contributes
Annual System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The academic year is

composed of 30-week regular

subjects.

 

5. Modes of Attendance offered
1st and 2nd , 2015 – 20166. Semester/Year

 

120 hrs / 4 hrs per week7. Number of hours tuition (total)
2018of Date of production/revision  8- this specification 
. 9.Aims of the Course
The primary purposes of engineering mechanics is to:

1-Develop the capacity to predict the effects of force and motion while carrying out

the creative design functions of engineering. This capacity requires more than a

mere knowledge of the physical and mathematical principles of mechanics.

2-Increase the ability to visualize configurations in terms of real materials, actual

constraints and the practical limitations which govern the behavior of mechanics

and structures.

3- Help the student to develop his ability to visualize which is so vital to problem

formulation.

4- Achieve maximum progress when the principles and their limitations are learned

together within the context of engineering applications.

5-To build up a strong background knowledge for the next engineering courses such

as fluid mechanics, strength of materials, structural analysis etc…

 

  10.Learning Outcomes
At the end of the class, the student will be able to:

a. Determine the resultant of the system of forces exerted on the rigid body in the

form of vector or scalar and transform them into equivalent force couple system.

b. Use equilibrium equations to determine the external reactions of statically

determinate structures.

c. Find the internal forces and their types in the members of statically determinate

truss by both joint method and section method.

d. Determine the centroids of line, area, and volume.

e. Calculate the moment of inertia of area of any shape and can transfer it to any

axis.

f. Describe the motion of particle at any moment (displacement, velocity and

acceleration) That is moving on linear or curvilinear path. The motion of

projectiles can also be solved.

g. Resolve the motion of particle by rectangular ,tangential-transverse and polar

coordinates,  respectively.

h. Analyze the relative motion of bodies (displacement, velocity, and acceleration).

i. Calculate centroid, area moment of inertia of various figures.

 

j. Calculate various types of  forces (external, internal, and friction force) which are

exerted on the moving bodies by using second Newton’s law.

k.Use work and equations to determine velocity, displacement, and applied force.

      11.Teaching and Learning Methods
13. Lectures

14. Tutorials

15. Homework and Assignments

17. Tests and Exams

18. In-Class Questions and Discussions

19. Connection between Theory and Application

21. Extracurricular Activities

22. Seminars

23. In- and Out-Class oral conservations

 

  Assessment 12.Methods 

1. Examinations, Tests, and Quizzes

2. Extracurricular Activities

3. Student Engagement during Lectures

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor )

 

13 Grading Policy

1. Quizzes:

– There will be a (20 – 25) closed books and notes quizzes

during the academic year.

– The quizzes will count 20% of the total course grade.

2. Tests, 2-3 Nos. and will count 10% of the total course grade.

3. Extracurricular Activities, this is optional and will count extra

marks (1 – 5 %) for the student, depending on the type of activity.

4. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on January 2018 from 9:00 AM – 12:00 PM

in rooms (W1+W2)

– The final exam will count 70% of the total course grade

 

 

14.Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LOs

( Article

10 )

HoursWeeks
1 – 4 of article (12)    1-12 of

article (11)

Basic concepts, scalar and vectors

 

a,l,m,n,

o,p,q,r

4

3 the.

1 tut.

 

1
1 – 4 of article (12)    1-12 of

article (11)

Force, action, and reactiona,l,m,n,

o,p,q,r

4

3 the.

1 tut

2
1 – 4 of article (12)    1-12 of

article (11)

vector componentsa,l,m,n,

o,p,q,r

4

3 the.

1 tut

3
1 – 4 of article (12)    1-12 of

article (11)

Rectangular componentsa,l,m,n,

o,p,q,r

4

3 the.

1 tut

4
1 – 4 of article (12)    1-12 of

article (11)

Momenta and couplesa,l,m,n,

o,p,q,r

4

3 the.

1 tut

5
1 – 4 of article (12)    1-12 of

article (11)

Resultanta,l,m,n,

o,p,q,r

4

3 the.

1 tut

6
1 – 4 of article (12)    1-12 of

article (11)

Equilibrium, free body diagrama,l,m,n,

o,p,q,r

4

3 the.

1 tut

7
1 – 4 of article (12)    1-12 of

article (11)

Plane trusses, method of jointa,l,m,n,

o,p,q,r

4

3 the.

1 tut

8
1 – 4 of article (12)    1-12 of

article (11)

Method of sectiona,l,m,n,

o,p,q,r

4

3 the.

1 tut

9
1 – 4 of article (12)    1-12 of

article (11)

Center of mass, determining the center of gravitya,l,m,n,

o,p,q,r

4

3 the.

1 tut

10
1 – 4 of article (12)    1-12 of

article (11)

Centroid of line, area, volumea,l,m,n,

o,p,q,r

4

3 the.

1 tut

11
1 – 4 of article (12)    1-12 of

article (11)

Centroid of compound figuresa,l,m,n,

o,p,q,r

4

3 the.

1 tut

12
1 – 4 of article (12)    1-12 of

article (11)

Friction, friction forcea,l,m,n,

o,p,q,r

4

3 the.

1 tut

13
1 – 4 of article (12)    1-12 of

article (11)

static friction and kinetic frictiona,l,m,n,

o,p,q,r

4

3 the.

1 tut

14
1 – 4 of article (12)    1-12 of

article (11)

Type of friction problemsa,l,m,n,

o,p,q,r

4

3 the.

1 tut

15
1 – 4 of article (12)    1-12 of

article (11)

Area moment of inertiaa,l,m,n,

o,p,q,r

4

3 the.

1 tut

16
1 – 4 of article (12)    1-12 of

article (11)

Radius of gyration, transfer of axesa,l,m,n,

o,p,q,r

4

3 the.

1 tut

17
1 – 4 of article (12)    1-12 of

article (11)

Moment of inertia of compound figurea,l,m,n,

o,p,q,r

4

3 the.

1 tut

18
1 – 4 of article (12)    1-12 of

article (11)

Rectilinear motion, velocity and accelerationa,l,m,n,

o,p,q,r

4

3 the.

1 tut

19
1 – 4 of article (12)    1-12 of

article (11)

Curvilinear motion, velocity, accelerationa,l,m,n,

o,p,q,r

4

3 the.

1 tut

20
1 – 4 of article (12)    1-12 of

article (11)

Rectangular coordinates, x,ya,l,m,n,

o,p,q,r

4

3 the.

1 tut

21
1 – 4 of article (12)    1-12 of

article (11)

Normal and tangential coordinates, velocity and accelerationa,l,m,n,

o,p,q,r

4

3 the.

1 tut

22
1 – 4 of article (12)    1-12 of

article (11)

Polar coordinates, velocity and accelerationa,l,m,n,

o,p,q,r

4

3 the.

1 tut

23
1 – 4 of article (12)    1-12 of

article (11)

Relative motion, displacement, velocity and accelerationa,l,m,n,

o,p,q,r

4

3 the.

1 tut

24
1 – 4 of article (12)    1-12 of

article (11)

Newton’s 2nd law, force, mass and accelerationa,l,m,n,

o,p,q,r

4

3 the.

1 tut

25
1 – 4 of article (12)    1-12 of

article (11)

Rectilinear motion, force, mass and accelerationa,l,m,n,

o,p,q,r

4

3 the.

1 tut

26
1 – 4 of article (12)    1-12 of

article (11)

Curvilinear motion, force, mass and accelerationa,l,m,n,

o,p,q,r

4

3 the.

1 tut

27
1 – 4 of article (12)    1-12 of

article (11)

Work and kinetic energya,l,m,n,

o,p,q,r

4

3 the.

1 tut

28
1 – 4 of article (12)    1-12 of

article (11)

Potential energy, work and linear springa,l,m,n,

o,p,q,r

4

3 the.

1 tut

29
1 – 4 of article (12)    1-12 of

article (11)

Principle of work and kinetic energya,l,m,n,

o,p,q,r

4

3 the.

1 tut

30
 

        15.Infrastructure

Textbook

· “Engineering Mechanics/ Statics”; by James L

Merriam  and L.G.Kraige,volume 1, fifth

Edition, 2006.

· “Engineering Mechanics/ Dynamics”; by James

L.Merriam  and L.G.Kraige, volume 1,fifth

Edition, SI Version 2006.

 

· References

1-“Vector Mechanics for Engineers” Statics and

Dynamics, Beer, F.P.,Int. Student Ed.,1962.

2-“Engineering Mechanics Statics and Dynamics,

” By Archie Higdon and William B.Stiles

third eddition., 1968.   

 3. “Mechanics of Materials”; by

Russel C. Hibbeler , Seven Edition, 2008

 

Others

1.     Notebook prepared by the instructor of the

course

2.     Collection of sheets of solved and  unsolved

problems and Exams questions

    Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·     OTHER

· Available websites related to the subject.

· Extracurricular activities.

Special requirements (include for

example workshops,

 

periodicals, IT software, websites)

· Field and scientific visits.

· Extra lectures by foreign guest lecturers

Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

. 16Admissions
Pre-requisites
/Minimum number of students
80Maximum number of students
17. Course Instructors

  TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources Engineering

 

2. University Department/Centre
Engineering Drawing , 105 WRED

This course provides a broad understanding of the basic principles of engineering drawing. The emphasis is on using tools to draw parallel and perpendicular lines, and to construct circles, arcs, tangents and irregular curves. As well as making sketches in isometric and orthographic views with dimensioning. Moreover creating sectional views in 2-D drawings.

3. Course title/code & Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Annual System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The academic year is composed of 30-week regular subjects.

5. Modes of Attendance offered
1st  and 2nd  / Academic Year 2015 – 20166. Semester/Year
150 hrs / 5 hrs per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
1-    Introduce basic definitions and introductory concepts of Engineering Drawing and lines.

2-    Introduce the lettering in pencil.

3-    Introduce the graphic instruments and their use

4-    Introduce the alphabet of lines.

5-    Provide exercises for the T- square, triangles and scale.

6-    Learning how to make combinations between arcs and circles by using compass.

7-    Learning how to put the dimensions, notes, limits and precision.

8-    Learning how to draw the ellipse in different methods.

9-    Ability to create orthographic views for engineering objects.

10- Ability to create isometric or pictorial drawings.

11- Ability to create sectional views in 2-D drawings.

10·  Learning Outcomes
1-    Graphics has always been the language of engineering and the preferred media for conveyance of design ideas.

2-    Having good technique in lettering as in drawing.

3-    Ability to use tools to draw parallel and perpendicular lines, and to construct circles, arcs, tangents and irregular curves.

4-    The alphabet of lines.

5-    Making combinations between arcs and circles by using compass.

6-    Putting the dimensions, notes, limits and precision.

7-    Drawing the ellipse in different methods.

8-    Creating orthographic views for engineering objects.

9-    Creating isometric or pictorial drawings.

10-      Creating sectional views in 2-D drawings.

      11. Teaching and Learning Methods
1-    Lectures.

2-    Sketching engineering objects in the freehand mode.

3-    Homework and Assignments.

4-    Tests and Exams.

5-    In-Class Questions and Discussions.

 

      12. Assessment Methods 
1-    Examination, tests, and quizzes

2-    Student engagement during lectures

 

13. Grading Policy

1. Quizzes:

– There will be (4) closed books and notes quizzes during the academic year.

– The quizzes will count 5% of the total course grade.

2. Tests, 4-5 Nos. and will count 10% of the total course grade.

3. 15% of the total course grade for the 1st semester classwork and homework.

4. 15% of the total course grade for the 2nd semester classwork and homework

5. Final Exam:

– The final exam will be closed books and notes, and will take place on June

2018 from 9:00 AM – 12:00 PM

– The final exam will count 25% of the total course grade

 

N.B. 30% of the total course grade will be for (perspective geometry).

 

14. Course Structure
Assessment MethodTeaching MethodUnit/Module or Topic TitleLOs (Article 10)HoursWeek
//For 1st Year ; The 1st semester starts in November//1
2
3
4
5
1 – 2 of

Article (12)

1 – 5 of

Article (11)

General Introduction about Engineering Drawing and Lines.156
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Lettering257
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Graphic instruments and their use.358
1 – 2 of

Article (12)

1 – 5 of

Article (11)

The alphabet of  lines459
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Exercises for the T-square, triangles and scale.

Circles and Tangents

3 & 4510
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Combinations (arcs and circles)5511
512
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Dimensions, notes, limits and precision.6513
1 – 2 of

Article (12)

1 – 5 of

Article (11)

The Ellipse7514
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Orthographic Drawing and Sketching (Projection)8515
516
517
518
519
520
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Pictorial Drawing and sketching (isometric)9521
522
523
524
525
526
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Sectional views and Conventions10527
528
529
530
 

15. Infrastructure

Textbook

Engineering Drawing and Graphic Technology “By Thomas E. French & Charles J. Vierck”

 

References

1-     / the Fundamentals of Engineering Drawing and Graphic Technology: ( Thomas E. French and Charles J. vierck)

2-    Technical Graphics Communication 🙁 Gary R. Bertoline and Eric N. Wiebe )

3-    Engineering Graphics “Text and Workbook”: ( Jerry W. Craig and Orval B. Craig)

الرسم الهندسي: ( عبد الرسول الخفاف )

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

 /Special requirements (include for example workshops, periodicals, IT software, websites)
 /Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
 /Pre-requisites
 /Minimum number of students
 75Maximum number of students
17. Course Instructors

.

 

TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources Engineering2. University Department/Centre
Statistical Engineering, 106 WRES3. Course title/code& Description
B.Sc. in Water Resources Engineering4. Program(s)  to which it Contributes
Annual system; There is only 0ne mode of delivery, which is a “Day Program “.The students are full time students, and on campus. They attend full day program in face-to-face. The academic year is composed of 30-week regular subjects. Each week there are three lectures, and each lecture 50-mintus.5. Modes of Attendance offered
1st and 2nd Semesters, Academic Year 2019-20186. Semester/Year
907. Number of hours tuition (total)
20188. Date of production/revision of  this specification
9. Aims of the Course

1- Graduate water resources engineers to serve in water resources management.

2- Improving the teaching and the administrative activities to meet international

accreditation standards and the mission of department.

3- Improving the academic abilities of the faculty and attracting highly skilled

personnel.

4- Improve the abilities of management and technical support staff and attract the

highly skilled for employment.

5-Optimum use of resources and potential of the department.

6-Coopration academic exchange programs partnerships with other universities and

academic centers in developed countries.

7- Establishing viable applied research that generates knowledge for local and

foreign market.

 

10·Learning Outcomes

 

a-  An ability to apply knowledge of statistics.

b- Knowing the methods of presentation the data.

c-Calculating the measures of central tendency, measures of dispersion, and to know

what means these measurements.

d-An ability to identify and formulate water resources  problems.

e- Applying the statistical analysis and to serve the statistical decision.

f- The broad education necessary to understand the impact of engineering solution in

global and social context.

g-An ability to create statistical models (mathematical models).

11.Teaching and Learning Methods

1-Lectures

2- Tutorials

3-Homework and Assignment

4-Test and Exams

5-In class Questions and Discussion

6-Extracturricular Activities

12. Assessment Methods

1- Examination

2- Extracurricular Activities

 

13. Grading Policy

1-There will be 5-6 closed book testes during the academic year, and will count

30% of the total grade.

2- Final Exam:

The final exam will be comprehensive, closed book and notes, and will take

place in June -2018 from 9:00 AM -12:00PM .

– The final exam will count 70% of total course grade.

14. Course Structure
Assessment MethodTeaching MethodTopic TitleLOs

(Artical10)

HoursWeek
1-2 article(12)1-6  of article(11)Introductiona,b31
1-2 article(12)1-6  of article(11)Introductiona,b32
1-2 article(12)1-6  of article(11)Measures of Central TendencyB,c33
1-2 article(12)1-6  of article(11)Measures of Central TendencyB,c,d34
1-2 article(12)1-6  of article(11)Measures of central tendencyB,c,d35
1-2 article(12)1-6  of article(11)Measures of Central TendencyB,cd36
1-2 article(12)1-6  of article(11)Measures of DispersionC,d37
1-2 article(12)1-6  of article(11)Measures of Dispersionc.d38
1-2 article(12)1-6  of article(11)Measures of DispersionC,d39
1-2 article(12)1-6  of article(11)Basis of ProbabilityE,f310
1-2 article(12)1-6  of article(11)Basis of ProbabilityE,f311
1-2 article(12)1-6  of article(11)Basis of ProbabilityE,f312
1-2 article(12)1-6  of article(11)Discrete Probability Dis.F,g313
1-2 article(12)1-6  of article(11)Discrete Probability Dis.F,g314
1-2 article(12)1-6  of article(11)Binomial Dis.F,g315
1-2 article(12)1-6  of article(11)Poisson’s Dist.F,g316
1-2 article(12)1-6  of article(11)Continuous Probability Dis.F,g317
1-2 article(12)1-6  of article(11)Continuous Probability Dis.F,g318
1-2 article(12)1-6  of article(11)Normal Dist.F,g319
1-2 article(12)1-6  of article(11)       Normal Dist.F,g320
1-2 article(12)1-6  of article(11)Normal Dist.F,g321
1-2 article(12)1-6  of article(11)T-Dist.G,f322
1-2 article(12)1-6  of article(11)Hypothesis-TestG,f323
1-2 article(12)1-6  of article(11)Test of MeanG,f324
1-2 article(12)1-6  of article(11)Z-TestG,f325
1-2 article(12)1-6  of article(11)Z-TestG,f326
1-2 article(12)1-6  of article(11)T-TestG,f327
1-2 article(12)1-6  of article(11)Correlation and RegressionG328
1-2 article(12)1-6  of article(11)Simple RegressionG329
1-2 article(12)1-6  of article(11)Simple RegressionG330
 

15. Infrastructure

Text Book:

1-    “Introduction to Statistics” by M. Abu-salih and Awad , John Wily and Sons,1983.

References :

1-    “Applied Statistics and Probability for Engineers” by Douglas C. Montgomery and George C. Runger, 2011, John Willy and Sons.

 

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include for example workshops, periodicals ,IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship, field  studies)

16. Admissions
Pre-requisites
Minimum number of students
65Maximum number of students
17. Course Instructors

 

TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

 

COURSE SPECIFICATION

  Building Construction Materials is a study of materials and supplies used in construction. Identification, uses, manufacture and structure of wood, cement, masonry and metal materials are discussed. The course focuses on the advantages and disadvantages of materials as they relate to durability, permeability, aesthetic qualities, internal stresses, heat and sound energy transfer, combustibility, fire ratings, and other physical characteristics.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Materials technology, 107 WRME

This course appraises the characteristics, properties, applications and behaviour (including strengthening mechanisms) during processing, fabrication, and service of a wide range of engineering materials, evaluate the effects of stress, fatigue, creep, corrosion, and wear on material, examine forms and effects of corrosion in metals and review the main methods of corrosion prevention, systematically apply and justify procedures used in the failure analysis of a Component, systematically specify and justify suitable material(s) for a given application, and including the use of relevant material selection methodologies.

3. Course title/code& Description
B Sc degree in Water Resources Engineering (WRE)4. Program (s) to which it Contributes
One Semester System; There is only one mode of delivery, which is a “Day program”. The students are full time students, and on campus. They attend full day program in face to face mode. The academic semester is composed of 15 weeks regular subjects.5. Modes of Attendance offered
2nd semester, 2019-20186. Semester/Year
60 hours / 4 hours per week7. Number of hours tuition (total)
20188. Date of production/revision of  this specification
9. Aims of the Course

The aim of this course is to get the students acquainted with the correlation between material behaviour and material properties. In engineering, designs are put into practice by making use of materials. As the student gets to know the mechanisms and concepts that determine the material behaviour, (s)he will have the required knowledge to make an optimal material choice. Finally, the student will understand how properties of the material can be optimized by adapting the material processing and consequently change the structural characteristics of the material.

 

 

 

10·Learning Outcomes
On completion of this course, students should be able to:

1.   Understand the language of building materials.

2.   Recognize major types of construction materials.

3.   Understanding the brick properties and types.

4.   Understand the brick works; bond types and bond materials.

5.   Understanding concrete material; cement and aggregate.

6.   Deals with admixtures.

7.   Concrete properties.

11.Teaching and Learning Methods
7.   Lectures

8.   Tutorials

9.   Home works assignments

10.            Lab. Experiments

11.            Test and exams

12.            In class questions and discussions

13.            Connection between theory and applications

14.           Reports, Presentations and Posters

12. Assessment Methods

1.   Examinations, Tests and Quizzes

2.   Extracurricular activities

3.   Student engagement during lectures

4.   Home works

5.   Reports Presentation and discussions

 

13. Grading Policy

1- Quizzes will be  (2 – 5) closed books and notes quizzes during the academic semester. The quizzes will count 5% of the total course grade.

2- Reports (5-7 Experiments) during the academic semester. The reports will count 5% of the total course grade.

3- Tests, 2 to 3 times, and will count 30% of the total course grade.

4- Final Exam: The final exam will be comprehensive close books and notes, take place in June from 9:00 AM to 11:30 AM. The final will count 60% of the total course grade.

14. Course Structure
Assessment MethodTeaching MethodUnit model or Topic titleLO’s

Article 10

HoursWeek
1 to 5 of article 121 to 8 of article 11Introduction in Material Technology1and 22 theo

2 Lab.

16
Introduction in Material Technology1and 22 theo

2 Lab.

17
Bricks32 theo

2 Lab.

18
Types of Brick32 theo

2 Lab.

19
Brick works42 theo

2 Lab.

20
Types of bond42 theo

2 Lab.

21
Mortar and its types42 theo

2 Lab.

22
Concrete52 theo

2 Lab.

23
Concrete works52 theo

2 Lab.

24
Cement52 theo

2 Lab.

25
Aggregates52 theo

2 Lab.

26
Admixtures62 theo

2 Lab.

27
Properties of concrete72 theo

2 Lab.

28
Properties of concrete72 theo

2 Lab.

29
Properties of concrete72 theo

2 Lab.

30
 

15. Infrastructure

Text book

Artin Livon and Zuhiyr Saako, 1977. “Building Construction” University of Mousul-Iraq. (Arabic Reference)

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Laboratory experiments in the materials Laboratory of the Department of Civil EngineeringSpecial requirements (include for example workshops, periodicals ,IT software, websites)
None.Community-based facilities

(include for example, guest

Lectures , internship,field  studies)

16. Admissions
Pre-requisites
Minimum number of students
Maximum number of students
17. Course Instructors

.

TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
University of Baghdad

College of Engineering

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Engineering Geology, 108 WREG

The course introduces basic definitions of minerals, rocks,, materials, rock mechanics, and surface erosion control

 

3. Course title/code& Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Semester System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The semester is composed of 15-week regular subjects. One hour theoretical and 2 hours of laboratory work per week

5. Modes of Attendance offered
1st semester, Academic year 2019-20186. Semester/Year
45 hours, 1 hr theoretical and 2 hrs laboratory work per week7. Number of hours tuition (total)
20188. Date of production/revision of  this specification
9. Aims of the Course
Teaching Principles of Engineering Geology
10·Learning Outcomes
Students will learn:

1-The engineering properties of rocks including computer

applications.

2- Types of aquifers and the motion of groundwater through

different aquifers including internet sources.

3-Tthe engineering properties of soils including computer

applications.

4- The mechanics of Mass Movement including internet sources.

5- The geo-engineering aspects of the reservoirs and dam

construction including internet sources.

11.Teaching and Learning Methods
1-    Lecture notes

2-    Computer software’s (Rock lab and Mohr’s view)-Lab work.

3-    Wooden samples of Faults and failure planes.

12. Assessment Methods

1- Two Monthly written exams.

 

13. Grading Policy

1- 30% monthly exams

2- 70% final exam.

14. Course Structure
Assessment Method

Article 12

Teaching Method

Article 11

Topic TitleLO’s

Article 10

HoursWeek
11,2,3Engineering Properties of Rocks3

1 theo

2 lab

1
11,2,3Engineering Properties of Rocks3

1 theo

2 lab

2
11,2,3Engineering Properties of Rocks3

1 theo

2 lab

3
11,2,3Engineering Properties of Rocks3

1 theo

2 lab

4
11,2,3Engineering Properties of Rocks3

1 theo

2 lab

5
11,2,3Engineering Properties of Rocks13

1 theo

2 lab

6
11,2,3Software ROCKLAB13

1 theo

2 lab

7
11,2,3Classification of Rocks13

1 theo

2 lab

8
11,2,3Classification of Rocks13

1 theo

2 lab

9
11,2,3Groundwater and Geology23

1 theo

2 lab

10
11,2,3Groundwater and Geology23

1 theo

2 lab

11
11,2,3Engineering and Physical Properties of Soils33

1 theo

2 lab

12
11,2,3Engineering and Physical Properties of Soils33

1 theo

2 lab

13
11,2,3Mechanics of Mass Movement43

1 theo

2 lab

14
11,2,3Dams and Reservoirs53

1 theo

2 lab

15
 

15. Infrastructure

1-    Principles of Geology: ( Gilluly J. , A. C. Waters and A. O.  Woodford, 3rd Edition )

2-    General Geology 🙁 Foster Robert J. , 5th Edition )

3-    Principles of  Physical Geology: (Arthur Holmes , 3rd Edition)

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Principles of Engineering Geology.

Physical Geology.

Special requirements (include forexample workshops, periodicals,IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship,field  studies)

16. Admissions
Pre-requisites
Minimum number of students
70 – 80.Maximum number of students
17. Course Instructors

.

  TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAMME REVIEW

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources

( WRD )

2. University Department/Centre
Introduction

to Water Resources Engineering / 109 WRIR

Topics covered: Water Resources, Irrigation Water, Flood Control, Water Resources Project in Iraq, Water Consumer Sector, Hydropower, Laws and International regional conventions on the use of shared water resource. The course is taught through 2 hrs peer week.

3. Course title/code & Description
B Sc degree in Water Resources Engineering4. Program(s) to which it Contributes
Annual System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students and on campus. They attend full day program in face-to-face mode.  The academic year is composed of 30-week regular subject

5. Modes of Attendance offered
1st and 2nd  / Academic Year 2018 – 20196. Semester/Year
60 hrs. / 2 hrs. per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification

  

9. Aims of the Course

The main goal of this course to learn the student that water is one of the most precious and a finite resources that is essential for agriculture, industry and human existence and the life in Iraq since eternity depends on the waters of its two great rivers: The Tigris and the Euphrates but its geographical location being the lower riparian state, is placing it in an embarrassing situation because it is negatively affected by the multi-purpose Turkish project constructed or planned to be constructed without a prior consultation with Iraq. Therefore this course is designed to alert

Students to the problem of water shortage in Iraq and how to save them and to conserve while providing necessary quantities as well as conserve the environment

 

10·  Learning Outcomes
At the end of the class, the student will be able to :

a.       Know the sources of water resources.

b.      know the water resources in Iraq.

c.       Know that  Iraq is primarily dependent for its  water resources  on the Tigris and Euphrates rivers, both these rivers are formed in turkey.

d.      study the path of the Euphrates and Tigris with its tributaries.

e.       know the project being constructed at present and are planned to be constructed in the future by Turkey on the Tigris and Euphrates rivers will lead to a grave deficiency in the quantity of waters in flowing into Iraq and to their low quality so there a problem of water shortage and the state has developed a policy to keep the water viewed by students.

f.        Capable al understand how to transfer irrigation water through irrigation water network at all levels and distribution in the field in different ways such as Subsurface irrigation, Surface irrigation, Sprinkler and Drip irrigation and learn the advantages and disadvantages each methods and learn the criteria that determine the quality of potable water for irrigation

g.      Learn how to get rid of excess water from the plant through drainage network at all levels and moving away from the field

h.      know types and benefits for structures of irrigation and drainage network

i.        know the method of flood control

j.        know the types of reservoirs, dams and spillways

k.      know the planned and executing projects to controlling Iraqi water resources for irrigation purposes and flood control such as dams and reservoirs, barrages and cross regulators, irrigation and  land reclamation projects and main outfall drain

l.        know the Water Consumer Sectors such as Agriculture sector, Industry sector, hydropower and water supply and municipal .It was concluded that the agriculture sector the biggest consumer of water.

m.    Learn how electricity is generated from hydroelectric stations.

n.      know the international laws and conventions and to regulate the use of regional shared water resources.

o.      know how to negotiate on the apportionment of the waters of the Tigris and the Euphrates.

p.      Understand the main challenge that faces the Arab countries is that more than 70% of the  Arab surface water with its sources in non Arab countries.

q.      Understand the lack of agreement with the non-Arab countries has many adverse effects mainly in the fact that those  the  non-Arab countries in the upstream part of the river have constructed some water control structures that affect the interest of the downstream Arab countries.

r.        Understand the problem of water shortage and techniques to save, conserve and manage our water resources while providing necessary quantities to satisfy economic and social requirements as well as conserve the environment.

s.       Learn how to write and to contribute to class discussion based on the reading

      11. Teaching and Learning Methods
1-Lectures.

2-Tests and Exams.

3-Field Trip.

4-Extracurricular Activities.

5-Seminars.

6-In-and out-Class oral conservations.

7-Reports,Presentation and Posters

      12. Assessment Methods

1-Examinations ,Tests,  and Quizzes                                                                        2-Extracurricular Activities

3-student Engagement  during lectures 

13. Grading Policy

1. Homework:

– The search paper will count 6% of the total course grade.

2. Exams:

– There will be six closed books and notes exam during the academic year,

– The mid-term exam will count 24% of the total course grade.

3. Final Exam:

– The final exam will be comprehensive, closed books and notes, and will take

place on, June, 2018 from 9:00 AM -12:00 PM in room XXXXX.

– The final exam will count 70% of the total course grade

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

Los

( Article

10 )

HoursWeek
1-3 of article(12)1-7 of article(11)Water resources: hydrologic cycle ,SourcesA2 theo.1
1-3 of article(12)1-7 of article(11)Field of Water ResourceA2 theo.2
1-3 of article(12)1-7 of article(11)Water Resources in Iraq: Sourcesb,c,d,p,r2 theo.3
1-3 of article(12)1-7 of article(11)Water Resources in Iraq: Sourcesb,c,d,p,r2 theo.4
1-3 of article(12)1-7 of article(11)Iraqi water policy to conserve the water resourcese,p,q,r2 theo.5
1-3 of article(12)1-7 of article(11)Irrigation: sources, soil -water relationshipF2 theo.6
1-3 of article(12)1-7 of article(11)Water qualityF2 theo.7
1-3 of article(12)1-7 of article(11)Irrigation methodsF 2 theo.8
1-3 of article(12)1-7 of article(11)Drainage: sources of excess waterG2 theo.9
1-3 of article(12)1-7 of article(11)Drainage and Irrigation net workf,g2 theo.10
1-3 of article(12)1-7 of article(11)Drainage and Irrigation net work structureH2 theo.11
1-3 of article(12)1-7 of article(11)Ground water: occurrence, ground water hydraulicG2 theo.12
1-3 of article(12)1-7 of article(11)Flood control: method of flood controlI2 theo.13
1-3 of article(12)1-7 of article(11)Types of reservoirsJ2 theo.14
1-3 of article(12)1-7 of article(11)Types of damsJ2 theo.15
1-3 of article(12)1-7 of article(11)Types of spillwaysJ2 theo.16
1-3 of article(12)1-7 of article(11)Water Resources project in Iraq: DamsK2 theo.17
1-3 of article(12)1-7 of article(11)ReservoirsK2 theo.18
1-3 of article(12)1-7 of article(11)BarrageK2 theo.19
1-3 of article(12)1-7 of article(11)Irrigation and Reclamation ProjectsK2 theo.20
1-3 of article(12)1-7 of article(11)Outfall DrainK2 theo.21
1-3 of article(12)1-7 of article(11)Water Consumer Sector: Agriculture sector, Industry sectorL2 theo.22
1-3 of article(12)1-7 of article(11)Hydropower, water supply and municipalL2 theo.23
1-3 of article(12)1-7 of article(11)Hydropower: introductionM2 theo.24
1-3 of article(12)1-7 of article(11)Method of electrical generation, hydropower station in IraqM2 theo.25
1-3 of article(12)1-7 of article(11)Laws on the use of Shared Water Resourcesn,p,q,r2 theo.26
1-3 of article(12)1-7 of article(11), the apportionment of the Tigris and Euphratesn,o,p,q,r2 theo.27
1-3 of article(12)1-7 of article(11)Each student will write a major research paper on some water resources issue and each student will also present his/her research to the class during the last few weeks of the semesterp,q,r,s2 theo.28
1-3 of article(12)1-7 of article(11)Each student will write a major research paper on some water resources issue and each    student will also present his/her research to the class during the last few weeks of the semesterp,q,r,s2 theo.29
1-3 of article(12)1-7 of article(11)Each student will write a major research paper on some water resources issue and each student will also present his/her research to the class during the last few weeks of the semesterP,q,r,s2 theo.30
 

15. Infrastructure

References

1-      Encyclopedia of Iraq’s Irrigation services by Ministry of Water Resources

2-      .Irrigation & Drainage by Charle Shukri

3-        Study of Laws , international and regional conventions to regulate the use of water resources by AOAD –

4-  Irrigation &Drainage in Iraq by Najib  Karofa

Others

1-Notebook prepared by the instructor of the course

2-Magazin Tender Rafidain by ministry of Water Resources

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

     · Available websites related to the subject.

· Extracurricular activities.

Special requirements (include for example workshops, periodicals, IT software, websites)
·        Extra lectures by foreign guest lecturers

·        Scientific Visits.

Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Pre-requisites
 /Minimum number of students
 57Maximum number of students
 

.

COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources Engineering2. University Department/Centre
Mathematics  II, 210 WRMA3. Course title/code & Description
B.Sc. in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Annual System, where the academic year is composed of 30-week regular subjects.

Each graduating student has to successfully complete 163 credits. Each subject credit is one 50-minute lecture a week or 3 hours of lab a week. There is no on-line subject which may be used as supplementary material for the class room instruction

5. Modes of Attendance offered
1st and 2nd           Year 2018 – 20196. Semester/Year
120 hrs/ 4 hrs per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
Improve the ability of student in the three dimensional mathematics and graph of three dimensional functions and their projection. Additionally, the course titles that descripted below. Study the hyperbolic functions, polar equations and functions, vectors, sequences and series, double and triple integrals, complex numbers, partial derivatives and the application in each listed item.
10·  Learning Outcomes
At the end of the class, the student will be able to:

a.      Find sketches, derivation and integration  of hyperbolic and Inverse hyperbolic functions and  their applications   (Catenary Cables)

b.     Achieve the transformation between the Polar and Cartesian Coordinates and graph of polar functions, conic sections in polar coordinates and their sketches and derivative and integration of polar equations.

c.      Analyze of vectors in space with the dot and cross product techniques and find the equations of line and plane in space and the product of three or more vectors. Derivatives of vectors and find the tangential and normal components velocity and acceleration in polar form.

d.     Find the derivative of functions of more than one variable and use of chain Rule and non-independence. Evaluation of the directional derivatives and the related applications.  How to apply the partial derivatives in the engineering problems and the higher order derivatives and the extreme points . Use Largrange multiplier with constraint.

e.      Understand the double integrals with definition, theory and how to find the region of integral with applications. Evaluate the double integrals in polar form, surface area and volume.

f.       Use the sequences and series in the field of engineering and the tests of them for convergence. Specify the alternative series and their tests. Use of power series and their convergence.

g.     Use of complex numbers in different forms and operations.

      11. Teaching and Learning Methods
1. Lectures

2. Tutorials

3. Homework and Assignments

4. Tests and Exams

6. In-Class Questions and Discussions

7. Connection between Theory and Application

   12. Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor).   

 

13. Grading Policy

1. Quizzes:

– There will be a ( 4 – 6 ) closed books and notes quizzes

during the academic year.

– The quizzes will count 10% of the total course grade.

2. Tests, 5-6 Nos. and will count 15 -20% of the total course grade.

3. Extracurricular Activities, this is optional and will count extra

marks (5 % ) for the student, depending on the type of activity.

4. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on May 2014 from 9:00 AM – 12:00 PM

in rooms ( WR5 + WR6 )

– The final exam will count 70% of the total course grade

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LO’s (Article 10)HoursWeek
1 – 4 of article (12)    1-7 of article (11)Definition of hyperbolic functionsa3 theo.

1 tutorial

1
1 – 4 of article (12)    1-7 of article (11)Inverse hyperbolica3 theo.

1 tutorial

2
1 – 4 of article (12)    1-7 of article (11)Applicationsa3 theo.

1 tutorial

3
1 – 4 of article (12)    1-7 of article (11)Polar Coordinates and graph of polar functionsb3 theo.

1 tutorial

4
1 – 4 of article (12)    1-7 of article (11)Conic sections in polar coordinates and their sketchesb3 theo.

1 tutorial

5
1 – 4 of article (12)    1-7 of article (11)Derivative and integration of polar equationsb3 theo.

1 tutorial

6
1 – 4 of article (12)    1-7 of article (11)Vectors: components , unit vectorsc3 theo.

1 tutorial

7
1 – 4 of article (12)    1-7 of article (11)Dot and cross productc3 theo.

1 tutorial

8
1 – 4 of article (12)    1-7 of article (11)Equation of line and plane in spacec3 theo.

1 tutorial

9
1 – 4 of article (12)    1-7 of article (11)Product of three or more vectorsc3 theo.

1 tutorial

10
1 – 4 of article (12)    1-7 of article (11)Derivatives of vectors and tangential and normal componentsc3 theo.

1 tutorial

11
1 – 4 of article (12)    1-7 of article (11)Velocity and acceleration in polar formc3 theo.

1 tutorial

12
1 – 4 of article (12)    1-7 of article (11)Introduction to Partial derivatived3 theo.

1 tutorial

13
1 – 4 of article (12)    1-7 of article (11)Chain Rule and non-independenced3 theo.

1 tutorial

14
1 – 4 of article (12)    1-7 of article (11)Directional derivatives and the applicationsd3 theo.

1 tutorial

15
1 – 4 of article (12)    1-7 of article (11)Applications of partial derivativesd3 theo.

1 tutorial

16
1 – 4 of article (12)    1-7 of article (11)Higher order derivatives and the extreme pointsd3 theo.

1 tutorial

17
1 – 4 of article (12)    1-7 of article (11)Higher order derivatives and the extreme pointsd3 theo.

1 tutorial

18
1 – 4 of article (12)    1-7 of article (11)Largrange multiplier with  constraintd3 theo.

1 tutorial

19
1 – 4 of article (12)    1-7 of article (11)Double integrals , definition and theorye3 theo.

1 tutorial

20
1 – 4 of article (12)    1-7 of article (11)Applicationse3 theo.

1 tutorial

21
1 – 4 of article (12)    1-7 of article (11)Double integrals in polar forme3 theo.

1 tutorial

22
1 – 4 of article (12)    1-7 of article (11)Surface area and volumee3 theo.

1 tutorial

23
1 – 4 of article (12)    1-7 of article (11)Sequences and seriesf3 theo.

1 tutorial

24
1 – 4 of article (12)    1-7 of article (11)Tests for convergencef3 theo.

1 tutorial

25
1 – 4 of article (12)    1-7 of article (11)Tests for convergencef3 theo.

1 tutorial

26
1 – 4 of article (12)    1-7 of article (11)Alternative series and their testsf3 theo.

1 tutorial

27
1 – 4 of article (12)    1-7 of article (11)Power series and their convergenceF3 theo.

1 tutorial

28
1 – 4 of article (12)    1-7 of article (11)Complex numbers and operationsg3 theo.

1 tutorial

29
1 – 4 of article (12)    1-7 of article (11)Complex numbers and operationsg3 theo.

1 tutorial

30
 

15. Infrastructure

1- Calculus: ( Ross L. Finney and George B. Thomas , 1989)

2- Thomas’ Calculus :(George B. Thomas, Maurice D. Weir and Joel R. Hass , 2011, 12th Edition)

3-  حساب التفاضل والتكامل 🙁 فرانك ايرز جونيور و اليوت مندلسون)

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Available websites related to the subject.Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
GE 101Pre-requisites
Minimum number of students
75Maximum number of students
17. Course Instructors

.

TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.

.

College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Computer Programming, 211 WRM3. Course title/code& Description
B Sc in Water Resources Engineering (WRE)4. Program(s) to which itContributes
5. Modes of Attendance offered
 1st and 2nd Semesters, academic 2019-20186. Semester/Year
60 hrs, 2 theoretical and 2 tutorial7. Number of hours tuition (total)
20188. Date of production/revision of  this specification
9. Aims of the Course
The course aim to introduce the basics of Microsoft Windows, windows properties, file menu, tool menu, Microsoft word, Excel language, Mat Lab
10 · Learning Outcomes

The student will be able to deal with:

­

1.     Excel Language

2.     Mat Lab

11.Teaching and Learning Methods
1.      Lectures

2.      Tutorials

3.      Reports

4.      Technical practice

12. Assessment Methods

1.  Examinations

2.  Reports

 

13. Grading Policy

1.     Four monthly examinations that account 30%

2.     Reports that account 10%

3.     Final examination that accounts 60%

Assessment MethodTeaching MethodTopicLO’sWeek
1, 21, 2, 3, 4Introduction to the Mat Lab1, 21
1, 21, 2, 3, 4M-files22
1, 21, 2, 3, 4Command windows23
1, 21, 2, 3, 4Expressions (Expressions): constants (constant), variables (variables), transactions (operators)24
1, 21, 2, 3, 4Orders of input and output (Input and Output commands)25
1, 21, 2, 3, 4Matrices and polynomial functions (Arrays and polynomials)26
1, 21, 2, 3, 4How to enter matrices (entering matrices)27
1, 21, 2, 3, 4Generating arrays (generating matrices)28
1, 21, 2, 3, 4Diagonal29
1, 21, 2, 3, 4Find determinants210
1, 21, 2, 3, 4Transpose211
1, 21, 2, 3, 4Inverse212
1, 21, 2, 3, 4Sum213
1, 21, 2, 3, 4Output matrices (product)214
1, 21, 2, 3, 4Output matrices (product)215
1, 21, 2, 3, 4Output matrices (product)216
1, 21, 2, 3, 4Output matrices (product)217
1, 21, 2, 3, 4Iterative loops (if, switch and case, for, while)218
1, 21, 2, 3, 4Function (function)219
1, 21, 2, 3, 4Graphics220
1, 21, 2, 3, 4Graphics221
1, 21, 2, 3, 4Graphics222
1, 21, 2, 3, 4Graphics223
1, 21, 2, 3, 4Drawing commands (plotting)224
1, 21, 2, 3, 4Drawing commands (plotting)225
1, 21, 2, 3, 4Drawing commands (plotting)226
1, 21, 2, 3, 4Drawing commands (plotting)227
1, 21, 2, 3, 4Drawing functions (plotting function) and ( drawing tools figure tools) and (mesh and surface)228
1, 21, 2, 3, 4Drawing functions (plotting function) and ( drawing tools figure tools) and (mesh and surface)229
1, 21, 2, 3, 4Drawing functions (plotting function) and ( drawing tools figure tools) and (mesh and surface)230
 

15. Infrastructure

1-    Matlab : An Introduction with Applications 🙁 Gilat Amos , 2010, 4th Edition, John Wiley & Sons.)

2-    Scientific Computing with Matlab and Octave: ( Quarteroni , Alfio, Saleri and Fausto , 2006, Springer)

3-     Matlab Code for Finite Element Analysis :(Ferreira and A.J.M. , 2009, Springer)

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Programming in matlabSpecial requirements (include forexample workshops, periodicals,IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship,field  studies)

16. Admissions
Pre-requisites
10Minimum number of students
38Maximum number of students
17. Course Instructors

 

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

  TEMPLATE FOR COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.

COURSE SPECIFICATION

College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources

 

2. University Department/Centre
Strength of Materials / 212WESM

This course introduces the fundamental principals of  mechanics of materials covering the following topics:

-Simple stresses in loaded member (average normal, bearing and shear stress. Stress in thin walled pressure vessels is also considered

– Simple strain, Hooke’s Low, Poisson’s ratio, biaxial deformations.

-Torsion in solid and hollow shafts.

-Shear and bending moment diagrams in beams.

-Stresses in beams, derivation of formula for bending stress and shear stresses

-Beam deflections: double integration method, theorem of area moment method, Moment diagram by parts, superposition method.

 

-Combined stresses, combined axial and flexural loads, variation of stress at a point. Mohr’s circle.

-The course is designed to provide a background to higher level courses ( structural analysis, reinforced concrete design).

-The course is taught through 3 hrs per week, 2 hrs theories, 1 hrs tutorial.

 

3. Course title/code & Description
B Sc degree in Water Resource Engineering     ( WRE )4. Programme(s) to which it Contributes
Annual System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The academic year is

composed of 30-week regular

subjects.

 

5. Modes of Attendance offered
1st and 2nd  /2018 – 20196. Semester/Year

 

90 hrs / 3 hrs per week7. Number of hours tuition (total)
2018of Date of production/revision  8- this specification 
. 9.Aims of the Course
1. Introduce the fundamental principal of stress , strain and the relationship between

them.

2. Determine the internal forces in the elastic bodies using equilibrium equations .

3. Draw the shear force diagram and bending moment diagram for statically

determinate beams under various types of loadings  by both section method and

area method.

4. Explain and derive equations for calculating bending stress and horizontal

shearing stress across the beam for different cross sections.

5.Derive equation for determination the stress and twist angle in circular solid and

hollow shafts  due to torsion.

6. Use theory of  flexural bending to derive differential equation for calculating the

deflection of beams.

7. Apply the first theorem and second theorem of the area-moment method  to

determine the slope and deflection of beams.

8. Draw the bending moment diagram by part to simplify the calculation of

deflection by moment-area method.

9. Use superposition theorem to determine the deflection.

10.Determine state of stresses at a point using Mhore’s circle.

11. Provide a strong background to higher level courses such as structural analysis

and design of reinforced concrete.

 

  10.Learning Outcomes
At the end of the class, the student will be able to:

a. Determine the internal forces (normal forces, shear forces and bending moment)

in beams(simply-supported, cantilever ,over-hanged) resulting from applied

external loads.

b. Calculate;  all types of the internal stresses (shearing stress, flexural stress and

stress due to torsion) through the cross section of the structural member.

c. Find the elastic deformations  of structural member subjected to axial stress using

Hook’s low.

d. Draw the shear force diagram and bending moment diagram for statically

determinate beams applying both section method and area method.

e. Use double integration method to calculate the deflection of  beams under

different types of loadings by applying the boundary conditions. The slope of

elastic curve is also can be found.

f. Calculate the deflection and slop of the elastic curve of the flexural beams using

moment area  method.

g. Determine the deflection and slope of the elastic curve of the flexural beams

using superposition method.

h. Draw the bending moment diagram of beams by part to simplify the calculating

the deflection by moment area method.

i. Analyze the stresses at a point (shear an normal stress) through different planes.

j. Draw Mohr’s circle to determine the normal and shear stress at any plane. The

principal stresses are also can be found.

      11.Teaching and Learning Methods
13. Lectures

14. Tutorials

15. Homework and Assignments

17. Tests and Exams

18. In-Class Questions and Discussions

19. Connection between Theory and Application

21. Extracurricular Activities

22. Seminars

23. In- and Out-Class oral conservations

Assessment 12.Methods 

1. Examinations, Tests, and Quizzes

2. Extracurricular Activities

3. Student Engagement during Lectures

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor)

13 Grading Policy

1. Quizzes:

– There will be a (20 – 25) closed books and notes quizzes

during the academic year.

– The quizzes will count 20% of the total course grade.

2. Tests, 2-3 Nos. and will count 10% of the total course grade.

3. Extracurricular Activities, this is optional and will count extra

marks (1 – 5 %) for the student, depending on the type of activity.

4. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on January 2018 from 9:00 AM – 12:00 PM

in rooms (M12 + M13)

– The final exam will count 70% of the total course grade

 

. 14.Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LOs

( Article

10 )

HoursWeeks
1 – 4 of article (12)    1-12 of

article (11)

Definition of simple stresses

 

a,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

1
1 – 4 of article (12)    1-12 of

article (11)

Normal stress and axial force diagrama,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

2
1 – 4 of article (12)    1-12 of

article (11)

Equilibrium equation and free body diagrama,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

3
1 – 4 of article (12)    1-12 of

article (11)

Determination of internal forcesa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

4
1 – 4 of article (12)    1-12 of

article (11)

Simple normal stressa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

5
1 – 4 of article (12)    1-12 of

article (11)

Simple Shear stressa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

6
1 – 4 of article (12)    1-12 of

article (11)

Simple  bearing stressa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

7
1 – 4 of article (12)    1-12 of

article (11)

Stress in thin-walled cylindera,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

8
1 – 4 of article (12)    1-12 of

article (11)

Stress-strain diagram, Hook’ lawa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

9
1 – 4 of article (12)    1-12 of

article (11)

Axial deformation, Poisson’ ratioa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

10
1 – 4 of article (12)    1-12 of

article (11)

Biaxial deformationa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

11
1 – 4 of article (12)    1-12 of

article (11)

Shear-force diagram

by section method

a,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

12
1 – 4 of article (12)    1-12 of

article (11)

Bending moment  diagram

by section

 

a,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

13
1 – 4 of article (12)    1-12 of

article (11)

Shear-force   diagram

by area method

a,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

14
1 – 4 of article (12)    1-12 of

article (11)

 Bending  moment  diagram

by area method

a,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

15
1 – 4 of article (12)    1-12 of

article (11)

Derivation of flexural stress formulaa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

16
1 – 4 of article (12)    1-12 of

article (11)

Flexural stress in un-symmetrical sectiona,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

17
1 – 4 of article (12)    1-12 of

article (11)

Derivation of horizontal shearing stress formulaa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

18
1 – 4 of article (12)    1-12 of

article (11)

Derivation of torsions formulasa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

19
1 – 4 of article (12)    1-12 of

article (11)

Torsion stress and twist angle

 

a,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

20
1 – 4 of article (12)    1-12 of

article (11)

Derivation of differential equation for elastic curvea,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

21
1 – 4 of article (12)    1-12 of

article (11)

Deflection by double integration methoda,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

22
1 – 4 of article (12)    1-12 of

article (11)

Theorem of area moment methoda,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

23
1 – 4 of article (12)    1-12 of

article (11)

Moment diagram by parta,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

24
1 – 4 of article (12)    1-12 of

article (11)

Deflection by moment area of cantilever and simple beamsa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

25
1 – 4 of article (12)    1-12 of

article (11)

Deflection by method of superpositiona,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

26
1 – 4 of article (12)    1-12 of

article (11)

Combined stressesa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

27
1 – 4 of article (12)    1-12 of

article (11)

Variation of stress at a point, Analytical derivationa,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

28
1 – 4 of article (12)    1-12 of

article (11)

Determination of stresses at a point by Mhor’s circlea,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

29
1 – 4 of article (12)    1-12 of

article (11)

Relation between modulus of rigidity and modulus of elasticitya,l,m,n,

o,p,q,r

3

2 the.

1 tut.

 

30
 

        15.Infrastructure

Textbook

· “Strength of Materials”; by Ferdinand L.

Singer/ Andrew Pytel, Third edition 1980.

 

· References

1. “Mechanics of materials”; by

Russel C. Hibbeler , Seven Edition, 2008

 

2-“Introduction to mechanics of solid”;   By

Popov,E. P., 1968.

3-“Elements of strength of materials”; By

Timoshinko and Young, 4th edition, 1962

Others

1.     Notebook prepared by the instructor of the

course

2.     Collection of sheets of solved and

unsolved problems and Exams

questions

    Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·     OTHER

· Available websites related to the subject.

· Extracurricular activities.

Special requirements (include for

example workshops,

 

periodicals, IT software, websites)

· Field and scientific visits.

· Extra lectures by foreign guest lecturers

Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

. 16Admissions
Pre-requisites
/Minimum number of students
75Maximum number of students

\

TEMPLATE FOR COURSE SPECIFICATION                      

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

        COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
University of Baghdad

College of Engineering

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Components of Hydraulic Structures/ 213 WRCS

This course introduces the description of Component of Hydraulic Structure consist Engineering projects, Foundations, Retaining walls, Irrigation Networks, Irrigation Structure, Control and Regulator Structure, Crossing Structure, Protection structure and Stilling Basin, Dams and spillways

The course includes 3 hrs per week, 1

Theoretical and  2 laboratory

3. Course title/code & Description
B Sc degree in Water Resources Engineering (WRE)4. Programme(s) to which it Contributes
Semester System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

Students and, on campus. They attend

full day program in face-to-face mode. The academic semester is composed of 15-week regular subjects.

5. Modes of Attendance offered
1st Semester,  Academic year 2018 – 20196. Semester/Year
45 hrs / 3 hrs per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
 

1.     Definitions of Engineering projects and component.

2.     Definitions Foundations type and draw it by using AutoCAD program

3.     Definitions Retaining walls type and draw it by using AutoCAD program

4.     Explain the Irrigation and drainage component

5.     Definitions Control and Regulator Structure and draw it by using AutoCAD program

6.     Definitions Crossing Structure and draw it by using AutoCAD program

7.     Definitions Protection structure and draw it by using AutoCAD program

8.     Definitions Dams and spillways and draw it sections by using AutoCAD program

10·  Learning Outcomes
At the end of the class, the student will be able to:

a.      Understand general introduction about engineering project specially irrigation project

b.     Understand foundation and retaining wall types, description and sketching

c.      Understand irrigation network type, longitudinal and cross section of canals

d.     Understand drainage network type, longitudinal and cross section of drain

e.      Understand control and regulatory structure component, description and sketching

f.       Understand crossing structure component, description and sketching

g.     Understand protection structure component, description and sketching

h.     Understand dams and spillways component, description and sketching

      11. Teaching and Learning Methods
1. Lectures

2. lab work

3. Homework and Assignments

4. Tests and Exams

5. In-Class Questions and Discussions

6. Connection between Theory and Application

7. Extracurricular Activities

      12. Assessment Methods

1. Examinations, Tests, and Quizzes

2. Lab work

3. Project

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor).

13. Grading Policy

1. Lab work:

– There will be a minimum of eleven sets of lab work during the academic course.

– The lab work will count 10% of the total course grade.

– The lab work exam during the course will count 5% of the total course grade.

2. Project:

– There will be a seminar during the course end about hydraulic structures in Iraq

each student chose one hydraulic structure.

– The Project will count 5% of the total course grade.

3. Exams:

– There will be three exams during the academic course,

– The exams will count 20% of the total course grade.

4. Final Exam:

– The final exam will be comprehensive, closed books and will take place on

Monday, January, 2014 from 9:00 AM – 12:00 PM. in class rooms (w1+w2)

– The final exam will count 60% of the total course grade

 

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LO’s

( Article

10 )

HoursWeek
1 – 4 of article (12)1-7 of article (11)Introduction and Engineering projectsa3

1 (theo.) +2 (lab.)

1
1 – 4 of article (12)1-7 of article (11)Foundationsa,b3

1 (theo.) +2 (lab.)

2
1 – 4 of article (12)1-7 of article (11)Retaining wallsa,b,c3

1 (theo.) +2 (lab.)

3
1 – 4 of article (12)1-7 of article (11)Irrigation Networksa,b,c,d3

1 (theo.) +2 (lab.)

4
1 – 4 of article (12)1-7 of article (11)Irrigation Networksa,b,c,d3

1 (theo.) +2 (lab.)

5
1 – 4 of article (12)1-7 of article (11)Irrigation Structurea,b,c,d3

1 (theo.) +2 (lab.)

6
1 – 4 of article (12)1-7 of article (11)Control and Regulatory Structurea,b,c,d3

1 (theo.) +2 (lab.)

7
1 – 4 of article (12)1-7 of article (11)Control and Regulatory Structurea,b,c,d3

1 (theo.) +2 (lab.)

8
1 – 4 of article (12)1-7 of article (11)Crossing Structurea,b,c,d,e3

1 (theo.) +2 (lab.)

9
1 – 4 of article (12)1-7 of article (11)Crossing Structurea,b,c,d,e3

1 (theo.) +2 (lab.)

10
1 – 4 of article (12)1-7 of article (11)Protection Structurea,b,c,d,e3

1 (theo.) +2 (lab.)

11
1 – 4 of article (12)1-7 of article (11)Protection Structurea,b,c,d,e,f3

1 (theo.) +2 (lab.)

12
1 – 4 of article (12)1-7 of article (11)Dams and Spillwaysa,b,c,d,e,f3

1 (theo.) +2 (lab.)

13
1 – 4 of article (12)1-7 of article (11)Dams and Spillwaysa,b,c,d,e,f,g3

1 (theo.) +2 (lab.)

14
1 – 4 of article (12)1-7 of article (11)Irrigation Structure Seminara,b,c,d,e,f,g3

1 (theo.) +2 (lab.)

15
15. Infrastructure
Textbook

“Irrigation Drawing”, Arabic book by Abd Al-Riza, Abd Al-Rasool, Baghdad, 1992

 

References

“Hydraulic Canals”,by J. Montanes

“Principles of irrigation Engineering”, by Newell & Murphy

Others

1. Notebook prepared by the instructor of the course

2. Collection of sheets of solved and

unsolved problems and Exams questions

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

· Available websites related to the subject.

· Extracurricular activities.

Special requirements (include for example workshops, periodicals, IT software, websites)
·        Extra lectures by foreign guest lecturers.Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
GE 101and GE 201Pre-requisites
 40Minimum number of students
60Maximum number of students
17. Course Instructors

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Water Resources Department

( WRD )

2. University Department/Centre
Surveying, 214 WRSU

This course introduces the introduction , definitions , classifications and principles on Plane Surveying ; Distance Measurements ; Taping Survey ; Leveling ; Topographic Survey ; Areas and Volumes ; Directions and Angles ;Theodolite ; Traversing . The course is taught through 5 hrs per week , 2 theoretical, 1 tutorial , and 2 practical

3. Course title/code & Description
B Sc  degree in Water Resources Engineering (WRE )4. Program(s) to which it Contributes
Annual System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend full day program in face-to-face mode.  The academic year is composed of 30-week regular subject

5. Modes of Attendance offered
1st and 2nd  / Academic Year 2018 – 20196. Semester/Year
150 hrs / 5 hrs per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
The fundamental of surveying class provides basic knowledge about the principles of surveying for measurement, location, design and construction of engineering projects .Student s develop skill using surveying instruments including measuring tapes, automatic levels, digital theodolite, planimeter and total station.

Cooperative efforts to acquire surveying data during Laboratory periods and apply fundamental concepts to adjust data and prepare maps and planning projects

10·  Learning Outcomes
At the end of the class, the student will be able to:

a.       Understand the basic principle of plane surveying and its application.

b.      Gain the ability to measure Horizontal Distance using Tape.

c.       Calculate the correction for incorrect tape length.

d.      Discuss the difference between random error, systematic error and mistakes.

e.       Measure distance with obstacle using Tape.

f.        Set out a point and building by Tape.

g.      Draw the longitudinal & grid scales.

h.      Booking and reducing the level.

i.        Demonstrate ability to set-up automatic level and read level rod and collect field data using differential leveling (laboratory).

j.        Calculate the combined effect of curvature and refraction.

k.      Demonstrate understanding of profile and cross sectioning to attain earthwork data.

l.        Indentify the characteristic and uses of contour lines and method of contouring.

m.    Draw contour map and to draw a profile of a center line of a proposed route from contour. Map

n.      calculate area of uniform figures and area of cross section using coordinate system.

o.      Measure area of land from map by planimeter.

p.      Determine cut and fill volumes in earthwork.

q.      Calculate the capacity of reservoir from contours map.

r.        Designation of bearings and deflection.

s.       Know the types of angles.

t.        Demonstrate the ability to set-up theodolite and measure the horizontal and vertical angles.

u.      Adjust the traverse and calculate coordinates.

v.      Gain the ability to apply knowledge of mathematics, science, and engineering to understand the measurement techniques and equipment used in land surveying.

w.    Improve ability to function as a member of a survey party in completing the assigned field work.

      11. Teaching and Learning Methods
1-Lectures.

2-Tutorials.

3-HomeWork and Assignments.

4-Field Works.

5-Tests and Exams.

6-In-class Questions and Discussions.

7-Connnection Theory and Application.

8-Reports.

      12. Assessment Methods 
        1-Examinations, Tests, and Quizzes                                                                        2-Extracurricular Activities .

3-student Engagement during lectures.

13. Grading Policy

1. Homework:

– There will be a minimum of seven sets of homework during the academic yea:

2. Exams:

– There will be seven closed books and notes exam during the academic year,

– The mid-term exam will count 35% of the total course grade.

3-There will be Seventeen Report on fieldwork.

– The reports will count 15% of the total course grade

4. Final Exam:

– The final exam will be comprehensive, closed books and notes, and will take

place on Sunday, June, 2014 from9:00 AM -12:00 PM in room XXXXX.

– The final exam will count 50% of the total course grad

 

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LOs

( Article

10 )

HoursWeek
 1-3 of article (12)1-8 of article  ( 11 )Plane Surveying: Introduction, Classificationa,v,w5

2 the.

1 tut.

2 lab.

1
1-3 of article (12)1-8 of article  ( 11 )Definition, Principlesa,v,w,5

2 the.

1 tut.

2 lab

2
1-3 of article (12)1-8 of article  ( 11 )Surveying measurement, Unitsa,v,w5

2 the.

1 tut.

2 lab

3
1-3 of article (12)1-8 of article  ( 11 )Errors and Mistakesd,v,w5

2 the.

1 tut.

2 lab

4
1-3 of article (12)1-8 of article  ( 11 )Horizontal Distance: Method of measuring, Instrumentb,v,w5

2 the.

1 tut.

2 lab

5
1-3 of article (12)1-8 of article  ( 11 )Tapingb,v,w5

2 the.

1 tut.

2 lab

6
1-3 of article (12)1-8 of article  ( 11 )Errors in tapingc,v,w5

2 the.

1 tut.

2 lab

7
1-3 of article (12)1-8 of article  ( 11 )Taping survey: Field workf,v,w5

2 the.

1 tut.

2 lab

8
1-3 of article (12)1-8 of article  ( 11 )Obstacles in measuring, closing errore,v,w5

2 the.

1 tut.

2 lab

9
1-3 o)f article (121-8 of article  ( 11 )Scalesg,v,w5

2 the.

1 tut.

2 lab

10
1-3 of article (12)1-8 of article  ( 11 )Leveling: Definitionh,i,v,w5

2 the.

1 tut.

2 lab

11
1-3 of article (12)1-8 of article  ( 11 )Booking and reducing the levelsh,i,v,w5

2 the.

1 tut.

2 lab

12
1-3 of article (12)1-8 of article  ( 11 )Booking and reducing the levelsh,i,v,w5

2 the.

1 tut.

2 lab

13
1-3 of article (12)1-8 of article  ( 11 )Correction of curvature, refraction and and closing Errorj ,v,w5

2 the.

1 tut.

2 lab

14
1-3 of article (12)1-8 of article  ( 11 )Profile and Cross Sectionk,v,w5

2 the.

1 tut.

2 lab

15
1-3 of article (12)1-8 of article (11)Topographic Surveying: Characteristicl,v,w5

2 the.

1 tut.

2 lab

16
1-3 of article (12)1-8 of article (11)Uses of contour linem,v,w5

2 the.

1 tut.

2 lab

17
1-3 of article (12)1-8 of article (11)Areas: Area of Uniform figures, Area of Landsn,v,w5

2 the.

1 tut.

2 lab

18
1-3 of article (12)1-8 of article (11)Area of cross sectionn,v,w5

2 the.

1 tut.

2 lab

19
1-3 of article (12)1-8 of article (11)Area by coordinates, Area by D.M.D and Area from mapsn,o,v,w5

2 the.

1 tut.

2 lab

20
1-3 of article (12)1-8 of article (11)Volumes: from cross sectionp,v,w5

2 the.

1 tut.

2 lab

21
1-3 of article (12)1-8 of article (11)Volumes from cross sectionp,v,w5

2 the.

1 tut.

2 lab

22
1-3 of article (12)1-8 of article (11)Volumes from contours maps, volumes from spot levelp,q,v,w5

2 the.

1 tut.

2 lab

23
1-3 of article (12)1-8 of article (11)Directions and angles: Meridian, Deflectionr,v,w5

2 the.

1 tut.

2 lab

24
1-3 of article (12)1-8 of article (11)Types of angless,v,w5

2 the.

1 tut.

2 lab

25
1-3 of article (12)1-8 of article (11)Theodolite, Measurement of horizontal and vertical anglest,v,w5

2 the.

1 tut.

2 lab

26
1-3 of article (12)1-8 of article (11)computation of bearing from angless,v,w5

2 the.

1 tut.

2 lab

27
1-3 of article (12)1-8 of article (11)Travers : Types, Traversing adjustmentu,v,w5

2 the.

1 tut.

2 lab

28
1-3 of article (12)1-8 of article (11)Traversing adjustmentu,v,w5

2 the.

1 tut.

2 lab

29
1-3 of article (12)1-8 of article (11)Computation of coordinateu,v,w5

2 the.

1 tut.

2 lab

30
 

15. Infrastructure

Textbook

Engineering Surveying by Dr. Nagi Tawifek

References

1-          Engineering Surveying by Yassin Taha Obaid

2-          Engineering &Cadastral Surveying by Zaid Abdul Jabbar

3-          A Text Book of Surveying by Jawahar Sharma

4-          Engineering surveying by       W.Schofield and M.Breach

5-          Surveying by A.M.Chandara

Others

1-Notebook prepared by the instructor

of the course

2. Collection of sheets of solved and unsolved

problems and Exams questions

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

· Laboratory experiments in the field

· Available websites related to the subject.

· Extracurricular activities.

Special requirements (include for example workshops, periodicals, IT software, websites)
Extra lectures by foreign guest lecturers.Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
GE 201  and  GE 101 CoursesPre-requisites
  /Minimum number of students
  67Maximum number of students
17. Course Instructors

.

  TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department Of Water Resource Engineering2. University Department/Centre
Soil Physics/ 215 WRSP

Soil physics and physical characteristics, the solid state, particle size distribution characterization,   textural fraction, specific surface area of soil particles, soil structure and aggregation, water content and potential, soil water, energy state of water in soil, soil moisture characteristic curve, water flow in saturated soil, water flow in unsaturated soil, infiltration, redistribution of water in soil profile.

3. Course title/code & Description
B Sc degree in Water Resources  Engineering (WRE)4. Program(s) to which it Contributes
Semester System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The academic semester is

composed of 30-week regular

subjects.

 

5. Modes of Attendance offered
1st Semester, Academic year 2019-20186. Semester/Year
75 hrs / 5 hrs per week, 2 hrs theoretical, 1 hr tutorial, and 2 hrs laboratory7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9- Aims of the Course

 

1- Introduce definition of soil physics and physical proprieties of soil.

2- Specific surface area of soil particles.

Definition of soil structure and aggregation. 3-

4.    Introduce Soil water, energy state of water in soil.

5.    Soil moisture characteristic curve.

6.    Water flow in saturated soil.

7.    Water flow in unsaturated soil.

8.    Introduce definition of soil Infiltration.

9.    Redistribution of water in soil profile

 

10·  Learning Outcomes

At the end of the class , the student will be able to define:

a.     Soil, soil physics and physical characteristics of soil.

b.     Soil texture, textural fractions, particle size distribution.

c.     Descriptive for soil profile horizons.

d.     Particle density, bulk density, porosity, void ratio, water content and degree of saturation.

e.     Specific surface area of soil particles.

f.     Soil structure, aggregate size distribution, and aggregate stability.

g.     Water content and potential.

h.     Measurement of soil wetness.

i.     Total soil water potential, gravity, pressure, and osmotic potential.

j.     Soil moisture characteristic curve, hysteresis of soil.

k.     Water flow in saturated soil, Darcy low.

l.     Flow in a horizontal column.

m.     Flow in a vertical column.

n.     Flow in a composite column.

o.     Hydraulic conductivity of saturated soil.

p.     Equation of saturated flow.

q.     Water flow in unsaturated soil.

r.     Infiltration, equation and measurement.

      11. Teaching and Learning Methods
1. Lecture

2. Tutorials

3. Homework and Assignments

4. Lab. Experiments

5. Tests and Exams

6. In-Class Questions and Discussions

7. Connection between Theory and Application

8. In- and Out-Class oral conservations

9. Reports

      12. Assessment Methods

1. Examinations, Tests, and Quizzes

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member ( Instructor)

13. Grading Policy

1.  Four monthly examinations that account 35%

2.  Laboratory reports account 7%

3.  Laboratory examination account 8%

4.  Final examination accounts 50%

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LO’s

( Article

10 )

HourWeek
1-4 of article (12)1-9 of article(11)Soil physical and physical characteristicsa5

2theo

1 tut

2 lab

1
1-4 of article (12)1-9 of article(11)1-9 of article(11)a ,b ,c ,d5

2theo

1 tut

2 lab

2
1-4 of article (12)1-9 of article(11)1-9 of article(11)a, b, c, d5

2theo

1 tut

2 lab

3
1-4 of article (12)1-9 of article(11)Specific surface area of soil particlese5

2theo

1 tut

2 lab

4
1-4 of article (12)1-9 of article(11)Soil structure and aggregationf5

2theo

1 tut

2 lab

5
1-4 of article (12)1-9 of article(11)    Water content and potentialg5

2theo

1 tut

2 lab

6
1-4 of article (12)1-9 of article(11)Soil water, energy state of water in soilh ,i5

2theo

1 tut

2 lab

7
1-4 of article (12)1-9 of article(11)Soil water, energy state of water in soilh, i5

2theo

1 tut

2 lab

8
1-4 of article (12)1-9 of article(11)Soil moisture characteristic curvej5

2theo

1 tut

2 lab

9
1-4 of article (12)1-9 of article(11)Water flow in saturated soilk,5

2theo

1 tut

2 lab

10
1-4 of article (12)1-9 of article(11)Water flow in saturated soilk, l, m,n,o,p5

2theo

1 tut

2 lab

11
1-4 of article (12)1-9 of article(11)Water flow in unsaturated soilq5

2theo

1 tut

2 lab

12
1-4 of article (12)1-9 of article(11)Water flow in unsaturated soilq5

2theo

1 tut

2 lab

13
1-4 of article (12)1-9 of article(11)Infiltrationr5

2theo

1 tut

2 lab

14
1-4 of article (12)1-9 of article(11)Redistribution of water in soil profiler5

2theo

1 tut

2 lab

15
 

15. Infrastructure

1-    Introduction to Environmental Soil Physics: ( Daniel Hillel , 2004)

2-    Introduction to Soil Physics: (Hillel , D. 1982)

3-    Method of Soil Analysis: ( USSSS, 1972)

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Soil Physic , Jury & Horton ,2004Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Pre-requisites
0Minimum number of students
70Maximum number of students
17. Course Instructors

.

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department Of Water Resource Engineering2. University Department/Centre
Land Reclamation, 216 WRLR

Reclamation concept, salt affected soils, characteristics, distribution and classification, properties of some important salt, program performance for reclamation of saline soils, field and laboratory surveying and investigation, leaching requirements, leaching curves, equations, mathematical form and modeling, leaching efficiency coefficient, leaching methods and time of leaching, salt balance in reclaimed soils, salt storage variations, leaching fraction calculations, irrigation water quality, reclamation of gypsiferous, desert,  and calcareous soils.

3. Course title/code & Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Semester System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The academic semester is

composed of 15-week regular

subjects.

5. Modes of Attendance offered
2nd Semester  Academic Year 2019-20186. Semester/Year
75 hrs. / 5 hrs. per week, 2theoretical, 1 tutorial, and 2 laboratory7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
1-Introduce definition of land reclamation, saline soils, sodic soils, saline-sodic soils.

2- Classification salt affected soils.

3-Properties of some important salt.

4- Program performance for reclamation of saline soils

5- Determination the leaching efficiency coefficient, leaching requirement.

6- Leaching methods, time of leaching, and leaching curve.

7- Leaching fraction calculation.

8- Salt balance in reclaimed soil.

9- Assessment of water quality irrigation.

10- Reclamation of gypsiferous soil.

11- Reclamation of desert and sandy soil.

12- Reclamation of calcareous soil.

 

10·  Learning Outcomes

At the end of the class, the student will be able to:

a-Define land  reclamation, saline soils,  sodic  soils.

b- Define types of salt- affected soils.

c- Define reclamation of salt- affected soils, leaching efficiency coefficient.

d- Solve leaching equation.

e- Calculate leaching requirements.

f- Prepare leaching curves.

g- Know leaching methods for reclamation soils.

h- Know mathematical forms and modeling.

i- Know single reservoir with bypass.

j- Define series of reservoirs with bypass.

-Prepare salt balance in reclaimed soil. k

I- Define irrigation water quality.

m- Reclaim  gypsiferous, desert and sandy soils.

      11. Teaching and Learning Methods
1. Lectures

2. Tutorials

3. Homework and Assignments

4. Lab. Experiments

5. Tests and Exams

6. In-Class Questions and Discussions

7. Connection between Theory and Application

8. In- and Out-Class oral conservations

9. Reports

      12. Assessment Methods

1. Examinations, Tests, and Quizzes

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member ( Instructor)

 
 

13. Grading Policy 1.

 

1. Quizzes:

– There will be a (20 – 25) closed books and notes quizzes

during the academic year.

– The quizzes will count 20% of the total course grade.

2. Tests, 2-3 Nos. and will count 10% of the total course grade.

3. Extracurricular Activities, this is optional and will count extra

marks (1 – 5%) for the student, depending on the type of activity.

4. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on January 2018 from 9:00 AM – 12:00

PM in rooms ( M12 + M13 )

– The final exam will count 70% of the total course grade

 

 

 

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LOs

( Article

 

HourWeek
1-4 of article (12)1-9 of article(11)Land reclamation concepta5

2 theo

1 tut

2 lab

16
1-4 of article (12)1-9 of article(11)1-9 of article(11)b5

2 theo

1 tut

2 lab

17
1-4 of article (12)1-9 of article(11)Properties of some important saltb, c5

2 theo

1 tut

2 lab

18
1-4 of article (12)1-9 of article(11)Program performance for reclamation of saline soils, field and laboratory surveying and investigation, leaching requirementsd5

2 theo

1 tut

2 lab

19
1-4 of article (12)1-9 of article(11)Leaching curve, equations, mathematical form and modeling, leaching efficiency coefficiente5

2 theo

1 tut

2 lab

20
1-4 of article (12)1-9 of article(11)Leaching curve, equations, mathematical form and modeling, leaching efficiency coefficientf, g5

2 theo

1 tut

2 lab

21
1-4 of article (12)1-9 of article(11)Leaching methods and time of leachingf, g5

2 theo

1 tut

2 lab

22
1-4 of article (12)1-9 of article(11)Salt balance in reclaimed soilsk5

2 theo

1 tut

2 lab

23
1-4 of article (12)1-9 of article(11)Salt storage variationk5

2 theo

1 tut

2 lab

24
1-4 of article (12)1-9 of article(11)Leaching fraction calculationsg d, e, f,g5

2 theo

1 tut

2 lab

25
1-4 of article (12)1-9 of article(11)Irrigation water, quality, classification and assessment for reclamationi5

2 theo

1 tut

2 lab

26
1-4 of article (12)1-9 of article(11)Irrigation water quality, classification and assessment for reclamationi5

2 theo

1 tut

2 lab

27
1-4 of article (12)1-9 of article(11)Reclamation of gypsiferous soilm5

2 theo

1 tut

2 lab

28
1-4 of article (12)1-9 of article(11)Reclamation of desert and sandy soilsm5

2 theo

1 tut

2 lab

29
1-4 of article (12)

 

1-9 of article(11)Reclamation of calcareous soilsm5

2 theo

1 tut

2 lab

30
 

15. Infrastructure

1.     Agricultural Salinity and Drainage 🙁 Blaine Hanson, Stephen R. Grattan and Allan Fulton, 1993)

2.     Land Reclamation, Theoretical and Practical Principle 🙁 1992)

 

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Irrigation Drainage and Salinity , Kovda,1974Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Pre-requisites
0Minimum number of students
70Maximum number of students
17. Course Instructors

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Water Quality and Treatment 217 WRWM

Introduction to water pollution, sources of water pollution, quality and characteristics of sewage, decomposition of sewage, the aerobic decomposition the anaerobic decomposition Nitrogen, Sulphur and Carbon cycle for both types of decomposition. Treatment of sewage, definition of preliminary, primary, secondary and final treatment, sludge treatment and disposal. Surface water, water quality standards, pollution effect on aquatic life, conventional water pollutants, toxic water pollutants, Water treatment, selection of water treatment processes, methods  used for treatment include screening, settling, coagulation, flocculation, filtration through beds of sand, and disinfection.

3. Course title/code & Description
B Sc degree in Water Resources Engineering4. Program(s) to which it Contributes
Annual System ; There is only one mode

of delivery, which is a “Day Program”.

The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.

Each subject credit is one 50-minute lecture a week or 3 hours of lab a week. There is no on-line subject

which may be used as supplementary

material for the class room instruction.

 

5. Modes of Attendance offered
1st and 2nd Semesters, Academic year 2019-20186. Semester/Year
120 hrs  / 4 hrs, per week 2 hrs theoretical and 2 hrs laboratory7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
 

1-    Introduce definition of water pollution, sources of pollution.

2-    Physical and Chemical characteristics of sewage and their testing.

3-    Determine of Biochemical Oxygen Demand and Chemical Oxygen Demand.

4-    Treatment of sewage, purpose of wastewater treatment.

5-    Definition of preliminary treatment, screening, grit chamber, skimming tank.

6-    Definition of primary sedimentation, theory of sedimentation, design of sedimentation tank.

7-    Secondary or biological treatment, trickling filter, definition, recirculation of treated sewage.

8-    Activated sludge process, definition, design, considerations involved in an activated sludge.

9-     Sludge treatment and disposal.

10- Surface water, quality criteria for surface water, water quality standard.

11- Selection of water treatment process.

12- The methods used for water treatment include screening, settling, treatment

with chemicals, filtration through beds of sand and disinfection.

10·  Learning Outcomes
At the end of the class, the student will be able to define:

a-Water pollution, sources of water pollution.

b-Quality and characteristics of sewage.

c- Pollution effects on aquatic life.

d- organic matter in wastewater.

e- Population Equivalent.

f-Classification of wastewater treatment plant.

g-Design the units of wastewater plant.

h- Water quality standard.

j- Water treatment system.

i- Selection of water treatment process.

j- unit of water treatment plant.

      11. Teaching and Learning Methods
1. Lecture

2. Tutorials

3. Homework and Assignments

4. Lab. Experiments

5. Tests and Exams

6. In-Class Questions and Discussions

7. Connection between Theory and Application

8. In- and Out-Class oral conservations

9. Reports and Posters

      12. Assessment Methods

1. Examinations, Tests, and Quizzes

2. Extracurricular Activities

3. Student Engagement during Lectures

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor)     

13. Grading Policy  

1. Quizzes:

– There will be a ( 20 – 25 ) closed books and notes quizzes

during the academic year.

– The quizzes will count 20% of the total course grade.

2. Tests, 2-3 Nos. and will count 10% of the total course grade.

3. Extracurricular Activities, this is optional and will count extra

marks ( 1 – 5 % ) for the student, depending on the type of activity.

4. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on January 2018 from 9:00 AM – 12:00

PM in rooms ( M12 + M13 )

– The final exam will count 70% of the total course grade

 

14. Course Structure
Assessment MethodTeaching MethodUnit/ Module or Topic TitleLO’s

(Article 10)

HoursWeek
1-4 of article(12)1-6 0f article (11)Introductory to water pollutiona4

2 theo

2 lab

1
1-4 of article(12)1-6 0f article (11)Quality and characteristics of Municipal wastewaterb, c4

2 theo

2 lab

2
1-4 of article(12)1-6 0f article (11)Biological oxidation of organic matterd4

2 theo

2 lab

3
1-4 of article(12)1-6 0f article (11) 

Biochemical Oxygen Demand (BOD)

d4

2 theo

2 lab

4
1-4 of article(12)1-6 0f article (11)Biochemical Oxygen Demand (BOD)d, e4

2 theo

2 lab

5
1-4 of article(12)1-6 0f article (11)Chemical Oxygen Demand (COD)d4

2 theo

2 lab

6
1-4 of article(12)1-6 0f article (11)    Decomposition of organic matterd4

2 theo

2 lab

7
1-4 of article(12)1-6 0f article (11)Treatment of sewage Preliminary treatmentf4

2 theo

2 lab

8
1-4 of article(12)1-6 0f article (11)Primary Treatmentf4

2 theo

2 lab

9
1-4 of article(12)1-6 0f article (11)Secondary Treatmentf4

2 theo

2 lab

10
1-4 of article(12)1-6 0f article (11)Trickling Filterf4

2 theo

2 lab

11
1-4 of article(12)1-6 0f article (11)Activated Sludge Processf4

2 theo

2 lab

12
1-4 of article(12)1-6 0f article (11)Activated Sludge Processf4

2 theo

2 lab

13
1-4 of article(12)1-6 0f article (11)Sludge digestion Processf4

2 theo

2 lab

14
1-4 of article(12)1-6 0f article (11)Disposal of digested sludgef4

2 theo

2 lab

15
1-4 of article(12)1-6 0f article (11)Introduction to surface water qualityg4

2 theo

2 lab

16
1-4 of article(12)1-6 0f article (11)Water quality standardg4

2 theo

2 lab

17
1-4 of article(12)1-6 0f article (11)Pollution effects on aquatic lifeg4

2 theo

2 lab

18
1-4 of article(12)1-6 0f article (11)Conventional water pollutantsg4

2 theo

2 lab

19
1-4 of article(12)1-6 0f article (11)Toxic water pollutantsg4

2 theo

2 lab

20
1-4 of article(12)1-6 0f article (11)Selection of water treatment processh, e4

2 theo

2 lab

21
1-4 of article(12)1-6 0f article (11)Types of treatmenth, e4

2 theo

2 lab

22
1-4 of article(12)1-6 0f article (11)Screeningh, e4

2 theo

2 lab

23
1-4 of article(12)1-6 0f article (11)Settlingh, e4

2 theo

2 lab

24
1-4 of article(12)1-6 0f article (11)Settlingh, e4

2 theo

2 lab

25
1-4 of article(12)1-6 0f article (11)Coagulationh, e4

2 theo

2 lab

26
1-4 of article(12)1-6 0f article (11)Flocculationh, e4

2 theo

2 lab

27
1-4 of article(12)1-6 0f article (11)       Filtrationh, e4

2 theo

2 lab

28
1-4 of article(12)1-6 0f article (11)Filtrationh, e4

2 theo

2 lab

29
1-4 of article(12)1-6 0f article (11)Disinfectionh, e4

2 theo

2 lab

30
 

15. Infrastructure

1-    Principles of  Water Quality Control: (T.H.Y. Tebutt , 1998)

2-    Water Supply and Pollution Control :(Warren Viessman , 9th Edition, 2009)

3-    Wastewater Treatment and  Disposal  :(S. J. Arceivala, 1981)

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Water Supply and  Pollution Control: by Warren Viessman, Jr. Mark J. Hammer, Eighth Edition, 2009Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Pre-requisites
Minimum number of students
70Maximum number of students
17. Course Instructors

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering , University of Baghdad(WRED)1. Teaching Institution
Department of Water Resources Department (WRD)2. University Department/Centre
Hydrology /319WRHY

.This course introduces the description of hydrologic cycle topic covers;

Weather and hydrology, precipitation, double mass analysis principles, stream flow and water stage computation, measurements of discharge, evaporation, characteristics of hydrograph, runoff calculations, unit hydrograph, S-curve, infiltration indices, stream flow routing, wave movement, abrupt wave , design storm and flood, and probability.

. The course is

taught through 3 hrs per week, 2

theoretical, 1 hr tutorial.

3. Course title/code & Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Annual System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The academic year is

composed of 30-week regular

subjects.

5. Modes of Attendance offered
1st and 2nd . / Academic Year 2019 – 20186. Semester/Year
90 hrs. / 3 hrs. per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
 

9.     Definitions of hydrological cycle including precipitation measurements.

10. Description the relation between stage-discharge principles and units.

11. Evaporation, type of method analysis.

12. Explain the hydrologic meanings of hydrograph, separation of hydrograph component.

13. Derivation of unit hydrograph and S-curve.

14. Rainfall runoff relation and infiltration capacity.

15. Flood routing using different methods (storage equation, Muskingum method and graphical method).

16.Probability using plotting positions, gumbel distribution, and log-pearson type –III distribution.

10·  Learning Outcomes
At the end of the class, the student will be able to:

a.      Define the hydrological cycle.

b.     Calculate the discharge of the river cross sectional area using current meter method.

c.      Deal with the stage-discharge relation through rating curves.

d.     Calculate the discharge using Chezy’s and Manning’s formulas.

e.      Be familiar with evaporation principles.

f.       Separate the hydrograph components.

g.     Derive unit hydrograph.

h.     Know how to draw the S-curve from unit hydrograph.

i.       Calculate the infiltration indices (ɸ and W).

j.       Know how to compute the outflow from the inflow using (storage equation, Muskingum, and graphical methods).

k.       Estimate the flow through the return period principles (probability).

      11. Teaching and Learning Methods
1. Lectures.

2. Tutorials.

3. Homework and Assignments.

4. Tests and Exams.

5. In-Class Questions and Discussions.

6. Connection between Theory and Application.

7. Extracurricular Activities.

      12. Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member ( Instructor ).

­­­­­­­

13. Grading Policy

 

1. Quizzes:

– There will be a ( 6 – 8 ) closed books and notes quizzes

during the academic year.

– The quizzes will count 25% of the total course grade.

2. Tests, 6-8 Nos. and will count 5% of the total course grade.

3. Extracurricular Activities, this is optional and will count extra

marks ( 1 – 5 % ) for the student, depending on the type of activity.

4. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on January 2018 from 9:00 AM – 12:00 PM

in class rooms (w1+w2)

– The final exam will count 70% of the total course grade

 

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LOs

( Article

10 )

HoursWeek
1 – 4 of article (12)1-7 of article (11)Hydrologic cycle and measurement of precipitationa3

2 the.

1 tut.

1
1 – 4 of article (12)1-7 of article (11)Estimating of missing precipitation and double-mass analysisa, b 

3

2 the.

1 tut.

 

2
1 – 4 of article (12)1-7 of article (11)Average precipitation over area and measurements of snowa, b3

2 the.

1 tut.

 

 

 

 

3
1 – 4 of article (12)1-7 of article (11)Stream flow and stagea, b, c3

2 the.

1 tut.

 

4
1 – 4 of article (12)1-7 of article (11)Discharge measurementa, b, c, d3

2 the.

1 tut.

 

5
1 – 4 of article (12)1-7 of article (11)Stage-discharge relations and unitsa, b, c, d3

2 the.

1 tut.

 

6
1 – 4 of article (12)1-7 of article (11)Stage-discharge relations and unitsa, b, c, d3

2 the.

1 tut.

 

7
1 – 4 of article (12)1-7 of article (11)Stage –discharge relations and units

 

a, b, c, d3

2 the.

1 tut.

 

8
1 – 4 of article (12)1-7 of article (11)evaporationa, b, c, d, e3

2 the.

1 tut.

 

9
1 – 4 of article (12)1-7 of article (11)Characteristic of hydrographa, b, c, d, e3

2 the.

1 tut.

 

10
1 – 4 of article (12)1-7 of article (11)Stream flow recessionsa, b, c, d, e3

2 the.

1 tut.

 

11
1 – 4 of article (12)1-7 of article (11)Hydrograph separationa, b, c, d, e, f3

2 the.

1 tut.

 

12
1 – 4 of article (12)1-7 of article (11)Hydrograph separationa, b, c, d, e, f3

2 the.

1 tut.

 

13
1 – 4 of article (12)1-7 of article (11)Unit hydrographa, b, c, d, e, f, g3

2 the.

1 tut.

 

14
1 – 4 of article (12)1-7 of article (11)Derivation of unit hydrographa, b, c, d, e, f, g3

2 the.

1 tut.

 

15
1 – 4 of article (12)1-7 of article (11)S-curvea, b, c, d, e, f, g, h3

2 the.

1 tut.

 

16
1 – 4 of article (12)1-7 of article (11)Synthetic unit hydrographa, b , c, d, e, f, g, h3

2 the.

1 tut.

 

17
1 – 4 of article (12)1-7 of article (11)Rational methoda, b, c, d, e, f, g, h3

2 the.

1 tut.

 

18
1 – 4 of article (12)1-7 of article (11)Rational methoda, b, c, d, e, f, g, h3

2 the.

1 tut.

 

19
1 – 4 of article (12)1-7 of article (11)Rainfall runoff relation and infiltration capacitya, b, c, d, e, f, g, h, i3

2 the.

1 tut.

 

20
1 – 4 of article (12)1-7 of article (11)Infiltration indexa, b, c, d, e, f, g, h, i3

2 the.

1 tut.

 

21
1 – 4 of article (12)1-7 of article (11)Stream flow routing and wave movementa, b, c, d, e, f, g, h, j3

2 the.

1 tut.

 

22
1 – 4 of article (12)1-7 of article (11)Abrupt wavea, b, c, d, e, f, g, h, i, j3

2 the.

1 tut.

 

23
1 – 4 of article (12)1-7 of article (11)Storage equation and routing in a river channelsa, b, c, d, e, f, g, h, i, j3

2 the.

1 tut.

 

24
1 – 4 of article (12)1-7 of article (11)Muskingum methoda, b, c, d, e, f, g, h, i, j3

2 the.

1 tut.

 

25
1 – 4 of article (12)1-7 of article (11)Reservoir routinga, b, c, d, e, f, g, h, j,3

2 the.

1 tut.

 

26
1 – 4 of article (12)1-7 of article (11)Reservoir routinga, b, c, d, e, f, g, h, i3

2 the.

1 tut.

 

27
1 – 4 of article (12)1-7 of article (11)Graphical methoda, b, c, d, e, f, g, h, j,3

2 the.

1 tut.

 

28
1 – 4 of article (12)1-7 of article (11)Probability and plotting positionsa, b, c, d, e, f, g, h, i, j, k3

2 the.

1 tut.

 

29
1 – 4 of article (12)1-7 of article (11)Gumbel distribution and log- pearson type III disributiona, b, c, d, e, f, g, h, i, j, k3

2 the.

1 tut.

 

30
 

15. Infrastructure

Textbook

Hydrology for engineers Ray K. Linsley, Max Adam Kohler.

 

References

1.     Applied hydrology by Chow Maidment Mays.

2.     Hydrology and flood plain analysis.

3.     Hydrology in practice Elizabeth M. Show.

Others

1. Notebook prepared by the instructor of the course

2. Collection of sheets of solved and

unsolved problems and Exams

questions

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

· Available websites related to the subject.

· Extracurricular activities.

Special requirements (include for example workshops, periodicals, IT software, websites)
·        Extra lectures by foreign guest lecturers.Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
GE101, GE201Pre-requisites
 40Minimum number of students
60Maximum number of students
 

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
             College of Engineering

University of Baghdad

1. Teaching Institution
Water Resources Department2. University Department/Centre
Soil Mechanics and Foundation Design/ 320 WRSM

All that concerns soil properties and classification, types and analysis of stress distribution on soil, shearing strength of soil and methods of calculation, Soil permeability and filter requirement, soil hydraulic seepage analysis, one dimensional consolidation, earth pressure and retaining structure, stability of slopes, settlement of foundation, bearing capacity and design of shallow foundation.

 

3. Course title/code & Description
B.Sc. in Water Resources Engineering4. Program(s) to which it Contributes
Annual System; There is only one mode of delivery, which is a “Day program”. The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic year is

composed of 30-week regular subjects.. This subject given 2 hours theory, 2 hour tutorial,  and 2 hour lab work per week  for one semester. There is no on-line subject which may be used as supplementary material for the class room instruction.

5. Modes of Attendance offered
1st and 2nd Academic year 2019-20186. Semester/Year
180 hrs/4 hrs per week(first semester) then 120 hrs/4 hrs per week (second semester)7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
1. Introduce basic definitions and introductory concepts of soil mechanics

2. Introduce basic definitions and introductory concepts of foundation design.

3.  Explain the flow of water through soil and the stresses that happened

4. Design of shallow footings.

5. Explain the bearing capacity and type of settlement.

6.Explain the flow of water through soil especially due to earth dams

7. Provide a background to higher level courses involving soil mechanic and

foundation design.

8. Explain the stresses due to retaining wall (rigid or flexible wall).

9. Explain the stresses that happened due to external loads and the geostatic stresses.

10. Explain how to describe the soil of any site and field tests.

10·  Learning Outcomes
1. The graduate student will be able to design and analyze shallow

foundation.

2. He will be able to describe the soil of the site with all the other

laboratory available test information.

3. Also he/she can analyze and design retaining walls, Dams and check all

the information of and available design.

      11. Teaching and Learning Methods
1. Lectures.

2. Tutorials.

3. Homework and Assignments.

4. Lab. Experiments.

5. Tests and Exams.

6. In-Class Questions and Discussions.

7. Seminars.

8. Reports and presentations.

      12. Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Student Engagement during Lectures.

3. Responses Obtained from Students, Questionnaire about Curriculum and Faculty

Member (Instructor).

 

 

13. Grading Policy

1. Quizzes:

– There will be about (5-8) closed books and notes quizzes during the academic

year. The quizzes will count 20% of the total course grade.

2. Tests

– There will be about (1-2) closed books and notes quizzes during the academic and

will count 10% of the total course grade.

3.Lab work

-There will about (7-8) experimental soil tests. This work will account 10% of the

total course grade.

4. Final Exam:

– The final exam will be comprehensive, closed books and Notes. The final exam

will count 60% of the total course grade.

14. Course Structure
Assessment MethodsTeaching methodTopic TitleLOsHoursWeek
1-3 of article (12)1-8 of article (11)Introduction and soil formation2, 32 the.

2 tut.

2 lab.

1
1-3 of article (12)1-8 of article (11)Phase relationship2, 32 the.

2 tut.

2 lab

2
1-3 of article (12)1-8 of article (11)Their derivations2, 32 the.

2 tut.

2 lab

3
1-3 of article (12)1-8 of article (11)Soil identification test2, 32 the.

2 tut.

2 lab

4
1-3 of article (12)1-8 of article (11)Calculation of the phase relation2, 32 the.

2 tut.

2 lab

5
1-3 of article (12)1-8 of article (11)Compaction2, 32 the.

2 tut.

2 lab

6
1-3 of article (12)1-8 of article (11)Soil classification2, 32 the.

2 tut.

2 lab

7
1-3 of article (12)1-8 of article (11)Stress within soil mass2, 32 the.

2 tut.

2 lab

8
1-3 of article (12)1-8 of article (11)Mohr circle and principle stress2, 32 the.

2 tut.

2 lab

9
1-3 of article (12)1-8 of article (11)Theory of one dimensional flow2, 32 the.

2 tut.

2 lab

10
1-3 of article (12)1-8 of article (11)Calculation of one dimensional flow2, 32 the.

2 tut.

2 lab

11
1-3 of article (12)1-8 of article (11)Two dimensional flow2, 32 the.

2 tut.

2 lab

12
1-3 of article (12)1-8 of article (11)Shear strength of soil2, 32 the.

2 tut.

2 lab

13
1-3 of article (12)1-8 of article (11)Compressibility of soils2, 32 the.

2 tut.

2 lab

14
1-3 of article (12)1-8 of article (11)Theory of settlement2, 32 the.

2 tut.

2 lab

15
1-3 of article (12)1-8 of article (11)Their application2, 32 the.

2 tut.

16
1-3 of article (12)1-8 of article (11)Consolidation theory2, 32 the.

2 tut.

17
1-3 of article (12)1-8 of article (11)Their application2, 32 the.

2 tut.

18
1-3 of article (12)1-8 of article (11)Lateral earth pressure1, 2, 32 the.

2 tut.

19
1-3 of article (12)1-8 of article (11)Types of earth pressure1, 2, 32 the.

2 tut.

20
1-3 of article (12)1-8 of article (11)Types of retaining wall1, 2, 32 the.

2 tut.

21
1-3 of article (12)1-8 of article (11)Analysis of rigid retaining wall1, 2, 32 the.

2 tut.

22
1-3 of article (12)1-8 of article (11)Analysis of flexible retaining wall1, 2, 32 the.

2 tut.

23
1-3 of article (12)1-8 of article (11)Sheet piles1, 2, 32 the.

2 tut.

24
1-3 of article (12)1-8 of article (11)Slope stability analysis1, 2, 32 the.

2 tut.

25
1-3 of article (12)1-8 of article (11)Bearing capacity analysis1, 2, 32 the.

2 tut.

26
1-3 of article (12)1-8 of article (11)Shallow foundation design1, 2, 32 the.

2 tut.

27
1-3 of article (12)1-8 of article (11)Spread footing design1, 2, 32 the.

2 tut.

28
1-3 of article (12)1-8 of article (11)Combined footing design1, 2, 32 the.

2 tut

29
1-3 of article (12)1-8 of article (11)Revision1, 2, 32 the.

2 tut

30
 

15. Infrastructure

Text books

1.     Soil Mechanics, SI version by (T. William Lambe and Robert V. Whitman).

2.      كتاب هندسة الاسس لدكتور يوسف الشكرجي.

3.     Principle of geotechnical Engineering by Braja M. Das

4.      Principle of Foundation Engineering by Braja M. Das.

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHERS

Laboratory experiments in the  Soil

Lab. of the department.

Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Pre-requisites
/Minimum number of students
46Maximum number of students
17. Course Instructors

.

 

  TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources Engineering2. University Department/Centre
Irrigation Engineering/ 321 WRIE

This course introduces the description of  principle of irrigation, the topics covered the followings:

Introduction to sources of  irrigation, physical soil properties, soil moisture content, soil moisture measurements, soil moisture calculations and units, net and gross depth of water, irrigation and conveyance efficiencies, reference evapotranspiration, crop evapotranspiration, crop coefficient, relation between discharge-depth of water-field area and time of irrigation, continuous and intermittent operations, water duty, irrigation interval, scheduling of irrigation and water budget, soil infiltration and land leveling and grading.

This course is taught through 3 hrs per week, 2 hrs theoretical and 1hr tutorial.

3. Course title/code & Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Annual system: there is only one mode of delivery, which is a day program. The students are full time students, and on campus. They attend full day program in face- to face mode. The academic year is composed of 30 weeks regular subjects.5. Modes of Attendance offered
1st and 2nd,  Academic year 2019-2018.6. Semester/Year
90 hrs/3 hrs per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
1. Introduce basic definitions and introductory concepts of irrigation.

2. Introduce the description of soil physical properties, available water, field

capacity, permanent wilting point and readily available water.

3. Introduce the description of soil moisture content, methods of measuring and

calculations.

4. Explain and description of net applied depth, gross depth of irrigation, application

and irrigation efficiency and conveyance irrigation.

5. Introduce the principles of evapotranspiration, reference evapotranspiration, crop

or actual evapotranspiration and crop coefficient.

6. Introduce the principles of relation between discharges, time of irrigation, depth

applied and field area.

7. Description of irrigation interval and the maximum value.

8. Difference between continuous and intermittent irrigation operations.

9. Description the principle of water balance and budget and to learn the procedure

of schedule of irrigation and methods used.

10- Explain the principle of infiltration process, rate of infiltration and basic

infiltration.

11- Description the basic and important of land leveling and grading, introducing

the principle of levelling, methods of calculating the required land slope and

methods used for calculating the volume of cut and fill.

10·  Learning Outcomes
At the end of the class, the student will be able to:

a. Define soil moisture calculation, readily available, and soil moisture deficit.

b. Calculate; required net depth of irrigation, gross depth of irrigation, application

and irrigation efficiencies, conveyance efficiencies in the canals, and the required

total water applied to the head of the canal.

c. Calculate; the reference evapotranspiration according to different methods, how to

use the weather parameters and applied in the different methods. And define the

crop coefficients for the plants. Additional to know how to calculate crop or

actual evapotranspiration.

d. Calculate; the discharge applied to the field (farm) according to the applied depth

of water, time of irrigation and the field area.

e. Understand and apply the calculated discharge in the operation of irrigation,

continuous and intermittent discharge.

f. Formulate and solve the water duty according to the continuous discharge and the

field area.

g. Define the irrigation intervals and the maximum irrigation intervals.

h. Calculate and managed the schedule of irrigation by using two methods, and

calculate the water budget. And define the difference between the two methods.

i. Define and calculate the infiltration, infiltration rate, instantaneous infiltration rate

and basic infiltration rate. Additional how to use the log-log paper, and the least

squares method to define the equation.

j. Calculate; the land grading, longitudinal and horizontal slopes, cut and fill ratio,

adjusting the plane of the land, and then calculation of volume of fill and cut by

using different methods.`

k. Use the techniques, skills, and modern engineering tools necessary for

engineering practice.

l. Identify and solve engineering machines production problems.

      11. Teaching and Learning Methods
a- Lectures

b-Tutorials

c- Homework and Assignments

d-Tests and Exams

e- In-Class Questions and Discussions

f- In class question work

      12. Assessment Methods

1. Examinations and Quizzes

2. Homework

3. Student Engagement during Lectures

4. In class questions work

13. Grading Policy

1. Quizzes:

– There will be a (5 – 8) closed books and notes quizzes

during the academic year.

– The quizzes will count 5% of the total course grade.

2. Tests, 4-6 Nos. and will count 20% of the total course grade.

3. Homework will be count 5%.

4. In class work Activities, this is optional and will count extra

marks (1 – 5 %) for the student, depending on the type of activity –

5. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on June 2018 from 9:00 AM – 12:00 PM

– The final exam will count 70% of the total course grade.

14. Course Structure
Assessment MethodTeaching MethodLOs (article 10)Topic titleHoursWeek
1-4 of article (12)a-f of article (11)a, kIntroduction and review31
1-4 of article (12)a-f of article (11)a, kPhysical soil properties32
1-4 of article (12)a-f of article (11)a, kSoil moisture content33
1-4 of article (12)a-f of article (11)a, kSoil moisture measurements34
1-4 of article (12)a-f of article (11)a, kReadily available water and soil moisture deficit35
1-4 of article (12)a-f of article (11)a, kRelation between depth of soil, depth of water and soil moisture content36
1-4 of article (12)a-f of article (11)a, kRelation between depth of soil, depth of water and soil moisture content37
1-4 of article (12)a-f of article (11)b, kNet and gross depth of applied water38
1-4 of article (12)a-f of article (11)b, kNet and gross depth of applied water39
1-4 of article (12)a-f of article (11)b, kIrrigation, application and conveyance efficiencies310
1-4 of article (12)a-f of article (11)c, kEvapotranspiration311
1-4 of article (12)a-f of article (11)c, kEvapotranspiration312
1-4 of article (12)a-f of article (11)c, kEvapotranspiration313
1-4 of article (12)a-f of article (11)d, kRelation between discharge, time, depth applied and field area314
1-4 of article (12)a-f of article (11)d, kRelation between discharge, time, depth applied and field area315
1-4 of article (12)a-f of article (11)e, kContinuous and intermittent operations316
1-4 of article (12)a-f of article (11)f, kWater duty317
1-4 of article (12)a-f of article (11)f, kWater duty318
1-4 of article (12)a-f of article (11)g, kIrrigation Interval319
1-4 of article (12)a-f of article (11)h, kSchedule of irrigation320
1-4 of article (12)a-f of article (11)h, kSchedule of irrigation321
1-4 of article (12)a-f of article (11)h, kSchedule of irrigation322
1-4 of article (12)a-f of article (11)h, kSchedule of irrigation323
1-4 of article (12)a-f of article (11)i, k, lInfiltration324
1-4 of article (12)a-f of article (11)i, k, lInfiltration325
1-4 of article (12)a-f of article (11)i, k, lInfiltration326
1-4 of article (12)a-f of article (11)j, k, lLand grading327
1-4 of article (12)a-f of article (11)j, k, lLand grading328
1-4 of article (12)a-f of article (11)j, k, lLand grading329
 

 

1-4 of article (12)

a-f of article (11)j, kCalculation of volume cat and fill330
15. Infrastructure
Textbook

“Irrigation Principle and Practice “ by  Israelsen

References

1-    Note book from web-site

2-    “Irrigation Engineering” by R. K. Sharma

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Pre-requisites
40Minimum number of students
55Maximum number of students
 

 

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmer specification.
University of Baghdad

College of Engineering

1. Teaching Institution
Department of Water Resources Engineering2. University Department/Centre
Irrigation and Drainage Networks, 322 WRID

This course introduces the description of design Irrigation and Drainage Networks. Topics covered: Types of Irrigation and Drainage Networks, Components, and Functions. Layout of Irrigation and Drainage Networks, Calculation of Discharge for Canals and Drains, Design of Water Course and Farm Channel (Slope), Design of Collector Drain (Slope), Determine the Water Level in Irrigation Canals, Determine the Water Level in Drains, Hydraulic Design of Canal Cross Section, the longitudinal section and synoptic diagram and Canals Lining.

3. Course title/code& Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
 

Semester System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The semester is composed of 15-week regular subjects.

5. Modes of Attendance offered
2nd  Semester

Academic Year 2018- 2019

6. Semester/Year
45 hrs (3 hrs per week)7. Number of hours tuition (total)
20188. Date of production/revision of  this specification
9. Aims of the Course
1- Types of irrigation and drainage networks, components, and functions.2- Enable the student to layout of irrigation and drainage networks.

3- Enable the student to calculation of discharge for canals and drains.

4- Enable the student to design of water course and farm channel (slope)

5- Enable the student to design of collector drain and main collector drain (slope).

6- Enable the student to determine the water level in irrigation canals and slopes.

7- Enable the student to determine the water Level in drains and slopes.

8- The student will be introduced to the design of canals cross section and drains.

9- Introduce the design by empirical method, and best hydraulic section method.

10- Regime canal.

11- Enable the student to draw the longitudinal section and synoptic diagram.

12- The student will be introduced to the basic information for Canal lining.

 

10·Learning Outcomes
The student will be able to:

1-    Understand and define irrigation and drainage networks.

2-    Layout of irrigation and drainage networks.

3-    Calculation of discharge for canals and drains.

4-    Design of water course and farm channel (slope)

5-    Design of collector drain and main collector drain (slope).

6-    Determine the water level in irrigation canals and slopes.

7-    Determine the water Level in drains and slopes.

8-    Design requires the use of steady uniform flow equation such as Manning’s and Chezy’s formula.

9-    Design by empirical methods

10-  Design by best hydraulic section methods.

11-  Design by Regime canals.

12-  Draw the longitudinal section and synoptic diagram.

13-  Understand the canal lining.

11.Teaching and Learning Methods
1.     Lectures

2.     Tutorials

3.     Homework

4.     In class Questions and Discussions

5.     Exams

6.     Connections between Theory and Application

7.     Field Trips

8.     Reports and Posters

12. Assessment Methods

·        Examination and Quizzes

·        Student Engagement during Lectures

13. Grading Policy

1. Homework:

·         There will be sets of homework during the academic year (2nd Semester).

2. Quizzes:

·      There will be some of closed books and notes quizzes during the academic year (2nd Semester).

3. Exams:

·        There will be a three closed books and notes exam during the academic year (2nd Semester).

·        The term exam will count 30% of the total course grade.

 

4. Final Exam:

·        The final exam will be comprehensive, closed books and notes.

·         The final exam will count 70% of the total course grade.

14. Course Structure

 

Assessment MethodTeaching MethodTopic TitleLO’s

Article (10)

hourWeek
1-2 of article (12)1-8 of article (11)Irrigation Network.

Drainage Network.

1316
1-2 of article (12)1-8 of article (11)Comparison between Irrigation and Drainage Networks.

Names and Numbers of Canals and Drains.

 

1317
1-2 of article (12)1-8 of article (11)Layout of Irrigation and Drainage Networks.

 

1-2318
1-2 of article (12)1-8 of article (11)Irrigation Unit.

Water Duty.

Drainage Coefficient.

3319
1-2 of article (12)1-8 of article (11)Calculation of Discharge for Canals and Drains.3320
1-2 of article (12)1-8 of article (11)Design of Water Course and Farm Channel (Slope).4321
1-2 of article (12)1-8 of article (11)Design of Collector Drain (Slope).5322
1-2 of article (12)1-8 of article (11)Determine the Water Level along the Main, Lateral, and Distributory Canal.6323
1-2 of article (12)1-8 of article (11)Determine the Water Level along the Main, and Main Collector Drain.7324
1-2 of article (12)1-8 of article (11)Hydraulic Design of Canal Section:

(Manning’s Formula and Chezy’s Formula).

8325
1-2 of article (12)1-8 of article (11)Empirical Methods.8-9326
1-2 of article (12)1-8 of article (11)Best Hydraulic Section Methods.8-10327
1-2 of article (12)1-8 of article (11)Regime Canals.

 

11328
1-2 of article (12)1-8 of article (11)Longitudinal Section and Synoptic Diagram.

 

3-4-5-6-7-12329
1-2 of article (12)1-8 of article (11)Lining of Canals.13330
 

15. Infrastructure

Text book

·

References

·        Design Manual for Irrigation and Drainage / Pencol 1983.

Others

·        Notebook Prepared by the Instructor.

·        Collection of Sheets of Solved and Unsolved Problems and Exams Questions.

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship, field  studies)

16. Admissions
Pre-requisites
Minimum number of students
67Maximum number of students
 

.

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering / University of Baghdad1. Teaching Institution
Department of Water Resources Department2. University Department/Centre
Fluid Mechanics / 323 WRFM

This course introduces the

description of phenomena associated

with fluid flow. Topics covered:

physical properties of fluids; fluid

statics; principles of conservation of

mass, energy and momentum; control

volume technique; Bernoulli

equation; dimensional analysis and

similitude; viscous flow in pipes and

channels; laminar and turbulent flow;

boundary layer theory; drag and lift;

Moody diagram; pipe problems; flow

and fluid measurements; analysis of

pipes and pumps networks, Open channel flow; normal depth, critical depth, specific energy curve, hydraulic jump, best hydraulic section, and water surface profiles.

. The course is

taught through 5 hrs per week, 3

theories, 1 tutorial, and 1

experimental.

3. Course title/code & Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Annual System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The academic year is

composed of 30-week regular

subjects.

5. Modes of Attendance offered
1st & 2nd  Academic Year 2018 – 20196. Semester/Year
150 hrs. / 5 hrs. per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
 

1. Definitions and introductory concepts of fluid

mechanics.

2. Introduce the description of pressure distribution in a static fluid and

its effects on submerged surfaces and bodies.

3. Introduce the description of phenomena associated with fluid flow

phenomena.

4. Explain and derive the conservation laws that govern fluid motion

(continuity, energy, and momentum equations).

5. Introduce the principles of “Dimensional Analysis” and “Similitude”

and their application to fluid mechanics problems.

6. Introduction to fluid flow in pipes, smooth and rough pipes, laminar and turbulent

flow, computation of major and minor losses in pipes.

7. Enable the student to analyze and design pipes network and pumps

connection.

8. Enable the student to measure the fluid properties and flow

parameters.

9. Provide a good physical and analytical understanding of fluid flows.

10. Provide a background to higher level courses involving open channel and

advance hydrodynamic flow.

10·  Learning Outcomes
 

At the end of the class, the student will be able to:

 

a. Define Fluids and Fluid Mechanics and distinguish between

incompressible and compressible fluids, and understand and define

the basic fluid properties; especially density and viscosity, and apply

Newton’s law of viscosity.

b. Calculate; the pressure in static fluid, hydrostatic forces on submerged

surfaces, buoyancy forces, stability of submerged and floating bodies,

and forces on accelerated fluids.

c. Be familiar with continuity, energy, and momentum equations, and

their applications to fluid flow problems.

d. Understand and apply the principles of dimensional analysis and

similitude to fluid mechanics problems.

e. Estimate drag and lift forces in laminar and turbulent flows for

different immersed bodies.

g. Calculate frictional losses in pipe problems for both laminar and

turbulent flows, by using Moody Diagram.

h. Calculate secondary ( minor ) losses for various pipes fittings and

connections.

i. Know how to measure flow properties ( pressure, velocity, discharge )

and fluid properties ( density and viscosity ).

j. Be able to analyze and design pipes network and connection, and

pumping stations and connection.

k. Be able to use dimensional analysis  to similitude different engineering problems.

l. Identify, formulate and solve engineering fluid problems.

m. Use the techniques, skills, and modern engineering tools necessary for

engineering practice in fluid mechanics applications.

      11. Teaching and Learning Methods
1. Lectures.

2. Tutorials.

3. Homework and Assignments.

4. Lab. Experiments.

5. Tests and Exams.

6. In-Class Questions and Discussions.

7. Connection between Theory and Application.

8. Extracurricular Activities.

      12. Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member ( Instructor ).

13. Grading Policy

1. Quizzes:

– There will be a ( 6 – 8 ) closed books and notes quizzes

during the academic year.

– The quizzes will count 30% of the total course grade.

2. Experimental Tests, 6-8 Nos. and will count 10% of the total course grade.

3. Extracurricular Activities, this is optional and will count extra

marks ( 1 – 5 % ) for the student, depending on the type of activity.

4. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on January 2014 from 9:00 AM – 12:00 PM

in class rooms (w1+w2)

– The final exam will count 60% of the total course grade

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LOs

( Article

10 )

HoursWeek
1 – 4 of article (12)1-8 of article (11)Introductory

Concepts To Fluid

Mechanics

a5

3 the.

1 tut.

1 exp.

1
1 – 4 of article (12)1-8 of article (11)Compressibility, viscosity, and surface tensiona,b5

3 the.

1 tut.

1 exp.

2
1 – 4 of article (12)1-8 of article (11)Pressure

Measurements and Forces On Immersed Surfaces

a,b5

3 the.

1 tut.

1 exp.

3
1 – 4 of article (12)1-8 of article (11)Buoyancy And  Floatationa,b5

3 the.

1 tut.

1 exp.

4
1 – 4 of article (12)1-8 of article (11)Measurements and Forces On Immersed Surfacesa,b,c5

3 the.

1 tut.

1 exp.

5
1 – 4 of article (12)1-8 of article (11)Velocity and accelerationa,b,c5

3 the.

1 tut.

1 exp.

6
1 – 4 of article (12)1-8 of article (11)continuity equationa,b,c5

3 the.

1 tut.

1 exp.

7
1 – 4 of article (12)1-8 of article (11)continuity equationa,b,c5

3 the.

1 tut.

1 exp.

8
1 – 4 of article (12)1-8 of article (11)Euler equationa,b,c5

3 the.

1 tut.

1 exp.

9
1 – 4 of article (12)1-8 of article (11)Euler equationa,b,c5

3 the.

1 tut.

1 exp.

10
1 – 4 of article (12)1-8 of article (11)Bernoullis equationa,b,c5

3 the.

1 tut.

1 exp.

11
1 – 4 of article (12)1-8 of article (11)Bernoullis equationa,b,c5

3 the.

1 tut.

1 exp.

12
1 – 4 of article (12)1-8 of article (11)Bernoullis equationa,b,c5

3 the.

1 tut.

1 exp.

13
1 – 4 of article (12)1-8 of article (11)Momentum principlesa,b,c5

3 the.

1 tut.

1 exp.

14
1 – 4 of article (12)1-8 of article (11)Momentum applicationa,b,c,e5

3 the.

1 tut.

1 exp.

15
1 – 4 of article (12)1-8 of article (11)Momentum applicationa,b,c,e5

3 the.

1 tut.

1 exp.

16
1 – 4 of article (12)1-8 of article (11)Dimensional

Analysis And

Similitude

a,b,c,d,e,k5

3 the.

1 tut.

1 exp.

17
1 – 4 of article (12)1-8 of article (11)Dimensional

Analysis And

Similitude

a,b,c,d,e,k5

3 the.

1 tut.

1 exp.

18
1 – 4 of article (12)1-8 of article (11)Dimensional

Analysis And

Similitude

a,b,c,d,e,k5

3 the.

1 tut.

1 exp.

19
1 – 4 of article (12)1-8 of article (11)Fundamental and pipe frictiona,b,c,d,e,f,g5

3 the.

1 tut.

1 exp.

20
1 – 4 of article (12)1-8 of article (11)Turbulent and Smooth pipesa,b,c,d,e,f,g,h5

3 the.

1 tut.

1 exp.

21
1 – 4 of article (12)1-8 of article (11)Major (friction) losses computationa,b,c,d,e,f,g,h5

3 the.

1 tut.

1 exp.

22
1 – 4 of article (12)1-8 of article (11)Minor losses computationa,b,c,d,e,f,g,h,i5

3 the.

1 tut.

1 exp.

23
1 – 4 of article (12)1-8 of article (11)Single and multiple pipeline problemsa,b,c,d,e,f,g,h,I,j5

3 the.

1 tut.

1 exp.

24
1 – 4 of article (12)1-8 of article (11)Analysis Of Piping

And Pumping

Networks

a,b,c,d,e,f,g,h,I,j5

3 the.

1 tut.

1 exp.

25
1 – 4 of article (12)1-8 of article (11)Analysis Of Piping

And Pumping

Networks

a,b,c,d,e,f,g,h,I,j,k,l,m5

3 the.

1 tut.

1 exp.

26
1 – 4 of article (12)1-8 of article (11)Open channel flowa,b,c,d,e,f,g,h,I,j,k,l,m5

3 the.

1 tut.

1 exp.

27
1 – 4 of article (12)1-8 of article (11)Normal depth, critical depth computationa,b,c,d,e,f,g,h,I,j,k,l,m5

3 the.

1 tut.

1 exp.

28
1 – 4 of article (12)1-8 of article (11)Specific energy curve , momentum principlea,b,c,d,e,f,g,h,I,j,k,l,m5

3 the.

1 tut.

1 exp.

29
1 – 4 of article (12)1-8 of article (11)Hydraulic jump, best hydraulic sectiona,b,c,d,e,f,g,h,I,j,k,l,m5

3 the.

1 tut.

1 exp.

30
 

15. Infrastructure

Textbook

Elementary fluid mechanics J.K. Vennard &R.L. Street.

 

References

4.     Fluid mechanics by R.K. RAJPUT, ISO 9001;2000

5.     Fluid mechanics by A.K. mohanty, New Delhi-110001;2009

6.     Fluid mechanics by Young, Munson, Okiishi, Huebsch

Others

1. Notebook prepared by the instructor of the course

2. Collection of sheets of solved and

unsolved problems and Exams

question

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

· Laboratory experiments in the ( Fluids

Lab ) of the department.

· Available websites related to the subject.

· Extracurricular activities.

Special requirements (include for example workshops, periodicals, IT software, websites)
·        Extra lectures by foreign guest lecturers.Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
/Pre-requisites
 45Minimum number of students
75Maximum number of students
 

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resource2. University Department/Centre
Structural Analysis, 324 WRSA3. Course title/code & Description
The course deals with different aspects of the design of structures. The course provides the knowledge to design various structures, such as beam on elastic foundation, bridges, design of circular and rectangular tanks.

The course also teaches the theory necessary to analyze and design these structures.

 

4. Programme(s) to which it Contributes
Semester System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The academic semester is

composed of 15-week regular

subjects.

5. Modes of Attendance offered
1st  semester, academic year 2019-20186. Semester/Year
30 hrs, 2 hrs theoretical per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course

The students must be able to independently design and analyze the hydraulic structures taught in this course and understand the theory on which the design is based.

 

 

10·  Learning Outcomes
At the end of the class, the student will be able to:

 

1-    Design different types of beams on elastic foundation

2-    Knowledge of many types of bridges, and the most suitable type depending on the distance, capacity, place condition.

3-    Design and analysis of two types of tanks (circular and rectangular).

 

      11. Teaching and Learning Methods
1. Lectures.

2. Tutorials.

3. Homework and Assignments.

4. Tests and Exams.

5. In-Class Questions and Discussions.

6. Connection between Theory and Application.

 

      12. Assessment Methods

1. Examinations, Tests, and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor)

13. Grading Policy

1.  Monthly examination that account 30%

2. The final exam which accounts 70%

14. Course Structure
Assessment Method (Article 12)Teaching Method (Article 11)Topic titleLO’s

(Article 10)

HrsWeek
1, 2, 31, 2, 3Introduction121
1, 2, 31, 2, 3Design of rigid beams122
1, 2, 31, 2, 3Beam on elastic foundation123
1, 2, 31, 2, 3Beam on elastic foundation124
1, 2, 31, 2, 3Beam on elastic foundation125
1, 2, 31, 2, 3Introduction to Bridges226
1, 2, 31, 2, 3Introduction to bridges227
1, 2, 31, 2, 3Design of bridges228
1, 2, 31, 2, 3Design of bridges229
1, 2, 31, 2, 3Design of circular tanks3210
1, 2, 31, 2, 3Design of circular tanks3211
1, 2, 31, 2, 3Design of rectangular tanks3212
1, 2, 31, 2, 3Design of rectangular tanks3213
1, 2, 31, 2, 3Design of rectangular tanks3214
1, 2, 31, 2, 3Design of rectangular tanks3215
 

15. Infrastructure

-Analysis of Beams on Elastic Foundations: Using Finite Difference Theory by Glyn JonesMatthew Jones. Thomas Telford, 1997

-Design of Bridge Structures M. A. Jayaram PHI Learning Pvt. Ltd.

-Design of circular tanks

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Pre-requisites
3Minimum number of students
60Maximum number of students
17. Course Instructors

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
             College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Design of Concrete Structures, 325 WRDC

Introduction, working stress design (WSD), ultimate stress design (USD), design of R/C beams for bending and shear, design of R/C one-way and two-way slabs, design of R/C columns.

3. Course title/code & Description
B.Sc. in Water Resources Engineering, (WRE)4. Program (s) to which it Contributes
Seasonal System ; There is only one mode of delivery, which is a “Day  program”. The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic semester is composed of 15-week regular subjects.. This subject is given 2 hrs theoretical and 2 hrs tutorial per week for one semester. There is no on-line subject which may be used as supplementary material for the class room instruction.5. Modes of Attendance offered
 2nd Semester, Academic year 2019-20186. Semester/Year
60 hrs/4 hrs per week (second semester)7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
To explain the behavior of reinforced concrete under loads and to identify the cross section of reinforced concrete and analyze it.
10·  Learning Outcomes
1. The graduate student will be able to design and analyze beams, slabs

and columns.

2. Calculate the allowable load and moment the beam can carry it

3. Find stress in concrete and steel for the reinforced concrete beams.

4. Design singly reinforced rectangular section.

5. Find the necessary area of flexural reinforcement required at the beam.

6. Find the dimensions of the beam.

7. Calculate the effective flange width of T-beam section.

8. Calculate the design strength for T-beam section.

9. Calculate shear strength (nominal strength and required strength).

10. Calculate shear strength provided by concrete and steel).

11. Design stirrup spacing.

12. Define type of slab (one way or two way).

13. Find slab thickness.

14. calculate the allowable load and moment the slab can carry it.

15. calculate the allowable load and moment the column can carry it.

 

      11. Teaching and Learning Methods

1. Lectures.

2. Tutorials.

3. Homework and Assignments.

4. Tests and Exams.

5. In-Class Questions and Discussions.

6. Connection between Theory and Application.

7. Extracurricular Activities.

8. Seminars.

9. In- and Out-Class oral conservations.

10. Reports, Presentations, and Posters.

      12. Assessment Methods 

1. Examinations and Quizzes.

2. Extracurricular Activities.

3. Student Engagement during Lectures.

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member ( Instructor ).

13. Grading Policy

1. Quizzes:

– There will be (2-5) closed books and notes quizzes during the academic year.

– The quizzes will count 25% of the total course grade.

2. Extracurricular Activities, this is optional and will count extra marks ( 5 % ) for

the student, depending on the type of activity.

3. Final Exam:

– The final exam will be comprehensive, closed books and Notes.)

– The final exam will count 70% of the total course grade

14. Course Structure
Week
1-3 of article (12)1-10 of article (11)Working stress design (WSD)1,2,3,42 the.

2 tut.

16
1-3 of article (12)1-10 of article (11)Uncracked section of (WSD)1,2,3,42 the.

2 tut.

17
1-3 of article (12)1-10 of article (11)cracked section of (WSD)1,2,3,42 the.

2 tut.

18
1-3 of article (12)1-10 of article (11)Ultimate stress design method (SDM) (analysis)1,2,4,52 the.

2 tut.

19
1-3 of article (12)1-10 of article (11)Ultimate stress design method (SDM) (design)1,2,4,52 the.

2 tut.

20
1-3 of article (12)1-10 of article (11)T-beams section (analysis)1,2,5,6,7,82 the.

2 tut.

21
1-3 of article (12)1-10 of article (11)T-beams section (design)1,2,5,6,7,82 the.

2 tut.

22
1-3 of article (12)1-10 of article (11)Shear and diagonal tension (analysis)1,2,4,5,6,9,10,112 the.

2 tut.

23
1-3 of article (12)1-10 of article (11)Shear and diagonal tension (design)1,2,4,5,6,9,10,112 the.

2 tut.

24
1-3 of article (12)1-10 of article (11)Reinforced concrete one way slab (analysis)1,13,142 the.

2 tut.

25
1-3 of article (12)1-10 of article (11)Reinforced concrete one way slab (design)1,13,142 the.

2 tut.

26
1-3 of article (12)1-10 of article (11)Reinforced concrete two way slab (analysis)1,13,142 the.

2 tut.

27
1-3 of article (12)1-10 of article (11)Reinforced concrete two way slab (design)1,13,142 the.

2 tut.

28
1-3 of article (12)1-10 of article (11)Reinforced concrete columns (analysis)1,152 the.

2 tut

29
1-3 of article (12)1-10 of article (11)Reinforced concrete columns (design)1,152 the.

2 tut

30
 

15. Infrastructure

·        Design of Reinforced Concrete, ACI 318-05 Code Edition. Seventh Edition Jack C. McGormac, James K. Nelson, John Wiley, 2006.

·        Design of Concrete Structures, 14th Edition Arthur H. Nilson, David Darwin, Charles W. Dolan, McGraw-Hill, 2010.

·        Reinforced Concrete: A Fundamental Approach, 5th Edition Edward G. Nawy, Prentice Hall, 2005.

·        Building Code Requirements for Structural Concrete,                     ACI 318M-11, American Concrete Institute, 2011.

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

 Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Mathematics, material science and technologyPre-requisites
10Minimum number of students
46Maximum number of students
17. Course Instructors

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programmer specification.
University of Baghdad

College of Engineering

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Engineering Analysis, 326 WREA

 

This course includes a study of differential equations: Topics include the solution of first and second order differential equations, homogeneous and non-homogeneous differential equations, physical applications, initial value problems, systems of linear differential equations, series solutions, and Fourier Series.

3. Course title/code& Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Seasonal System ; There is only one mode of delivery, which is a “Day  program”. The students are full time students, and on campus. They attend full day program in face-to-face mode. The academic semester is composed of 15-week regular subjects.. This subject is given 3 hrs theoretical and 1 hr tutorial per week for one semester. There is no on-line subject which may be used as supplementary material for the class room instruction.5. Modes of Attendance offered
1st  Semester

Academic Year 2018- 2019

6. Semester/Year
60 hrs (4 hrs per week)7. Number of hours tuition (total)
2018

 

8. Date of production/revision of  this specification
9. Aims of the Course
·        Classify differential equations by order, linearity, and homogeneity

·        Solve any first order differential equation.

·        Demonstrate variable separable, homogeneous, exact, linear, Bernoulli linear differential equations.

·        Set up and solve physical problems such as mixture problems.

·        Solve second order differential equations with constant coefficients and complementary and particular solutions.

·        Apply the methods of undetermined coefficients, variation of parameters and reduction of order.

·        Apply second order differential equations to springs.

·        Solve differential equations using power series.

·        Set up systems of linear differential equations using characteristic equations.

·        Solve systems of linear differential equations

·        Apply Fourier series to periodic functions.

·        Apply Euler’s Formula

·        Use the Wronskian determinant to test for linear independence or linear dependence.

10·Learning Outcomes
After completing this course students will be able to:

 

  1. Classify differential equations by order.

2.     Differentiate between linear and non-linear, ordinary and partial and different degreed differential equations.

  1. Solve first order linear differential equations.
  2. Use separation of variables to solve differential equations.
  3. Solve exact differential equations.
  4. Identify and solve homogeneous differential equations.
  5. Solve linear equations with constant coefficients.
  6. Solve the problems of ordinary differential equations.

9.     Solve second-degree homogeneous linear equations with constant coefficients

10. Solve second-degree non-homogeneous linear differential equations.

  1. Use the method of undetermined coefficients to solve differential equations.
  2.  Use variation of parameters to solve differential equations.

13.  Use the Wronskian and characteristic equations to solve differential equations.

14.  Solve second –order differential equations (by using reduction of order).

  1.  Solve second –order differential equations (Euler-Cauchy Equations).

16.   Find solutions to second, third and fourth degree differential equations.

17.   Model real-life applications using differential equations.

  1.  Demonstrate their understanding of differential equations and their applications to scientific and engineering applications problems.
  2.  Solve systems of linear differential equations.
  3.  Find the Fourier series of a given function.
  4.  Able to use series solution methods to obtain solutions and other useful information about the differential equations to which these methods apply.
  5.  Use analytic techniques to compute solutions to various differential equations.
  6.  Apply the knowledge of differential equations in order to solve engineering problems.
11.Teaching and Learning Methods
9.     Lectures

10. Discussions

11. Problem solving

12. Student Questions

13. Student Participation

14.  Oral Presentations

15. Homework

16. Exams

17. Connections between Theory and Application

Students are expected to read the material before coming to class and are strongly encouraged to come to class with a list of questions and to ask those questions.

12. Assessment Methods

·        Examination and Quizzes

·        Student Engagement during Lectures

13. Grading Policy

1. Homework:

·         There will be sets of homework during the academic year

2. Quizzes:

·      There will be a two closed books and notes quizzes during the academic year

3. Exams:

·        There will be a four closed books and notes exam during the academic year

·        The term exam will count 30% of the total course grade.

4. Final Exam:

·        The final exam will be comprehensive, closed books and notes.

·         The final exam will count 70% of the total course grade.

14. Course Structure

 

Assessment MethodTeaching MethodTopic TitleLO’s Article (10)hourWeek
1-2 of article (12)1-9 of article (11)Differential Equations1-241
1-2 of article (12)1-9 of article (11)First – Order Differential Equations:

1- Separable equations

 

3-442
1-2 of article (12)1-9 of article (11)2- Exact equation.

3- Homogeneous first-order equations

 

3-5-643
1-2 of article (12)1-9 of article (11)4- First-order linear equations and integrating factors.

5- Bernoulli equations

 

3-744
1-2 of article (12)1-9 of article (11)Application of First- Order Differential Equations

 

3-8-21-22-2345
1-2 of article (12)1-9 of article (11)Second – Order Differential Equations:

Homogeneous Equations with Constant Coefficient

 

946
1-2 of article (12)1-9 of article (11)Non-Homogeneous Linear Equations

 

1047
1-2 of article (12)1-9 of article (11)      Method of undermined coefficient

 

1148
1-2 of article (12)1-9 of article (11)Method of variation of parameters

 

12-1349
1-2 of article (12)1-9 of article (11)Second –Order Differential Equations (Reduction of order)

 

14410
1-2 of article (12)1-9 of article (11)Euler-Cauchy Equations

 

15411
1-2 of article (12)1-9 of article (11)Equation of Higher Order

 

16412
1-2 of article (12)1-9 of article (11)Application of Second – Order Differential Equations

 

17-18-21-22-23413
1-2 of article (12)1-9 of article (11)System of Simultaneous Differential Equations

 

19-21-22-23414
1-2 of article (12)1-9 of article (11)Fourier Series.

Even and Odd Functions

 

20-21-22-23415
 

15. Infrastructure

Text book

·        Advanced Engineering Mathematics.

References

·        Ordinary Differential Equations.

·        Differential Equations with Boundary – Value Problem.

·         Elementary differential equations and boundary value problems.

Others

·                     Notebook Prepared by the Instructor.

·         Collection of Sheets of Solved and Unsolved Problems and Exams Questions.

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship, field  studies)

16. Admissions
Pre-requisites
Minimum number of students
43Maximum number of students
 

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Numerical Analysis, 328 WRNM

Numerical methods course is a continuation of mathematics for engineers that enables the students  to solve mathematical expressions of engineering and scientific problems

3. Course title/code & Description
B Sc degree in Water Resources  Engineering (WRE)4. Programme(s) to which it Contributes
One time, day time on campus5. Modes of Attendance offered
The second semester of  the academic year 2018 –20196. Semester/Year
60 hours, 2 hrs theoretical and 2 hrs laboratory7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course: In general, the course was designed to provide the students with computational techniques to solve engineering problems when no mathematical solution exists.

 

10· Learning Outcomes the student will be able to apply numerical methods to solve different mathematical expressions in engineering including:

a- understanding of numerical methods to obtain solutions of mathematical expressions.

b- finding roots of equations,

c- solving system of linear simultaneous equations,

d- finding values by interpolation,

e- finding values of integration expressions,

f- solving ordinary differential equations,

g- solving boundary value problems,

and an additional out come is:

h- developing of team work.

11. Teaching and Learning Methods

a- lectures,

b- tutorials, and

c- supervised team work.

12. Assessment Methods

a- homework,

b- quizzes,

c- major examinations during the course, and

d- final examination.

13. Grading Policy

– Quizzes and Homework 15%

–  Two major in-term examinations  15%

–  Final examination 70%

14. Course Structure
Assessment

Method

(Article 12)

Teaching

Method

(Article 11)

Unit/Module or

Topic Title

LO’s

(Article 10)

HoursWeek
a, b, c, and daIntroductiona4

2 theo

2 lab

15
a, b, c, and da, b, c, and dRoots of equationsa, b, and h8

4 theo

4 lab

16, 17
a, b, c, and da, b, c, and dSystems of simultaneous linear equationsa, c, and h4

2 theo

2 lab

18, 19
a, b, c, and da, b, c, and dInterpolationa, d, and h4

2 theo

2 lab

20
a, b, c, and da, b, c, and dIntegrationa, e, and h8

4 theo

4 lab

21, 22
Examination4

2 theo

2 lab

23
a, b, c, and da, b, c, and dFirst order differential equationsa, f, and h8

4 theo

4 lab

24, 25
a, b, c, and da, b, c, and dHigher order ordinary differential equationsa, f, and h4

2 theo

2 lab

26
a, b, c, and da, b, c, and dFinite differencesa, g, and h4

2 theo

2 lab

27
a, b, c, and da, b, c, and dSolution boundary value problemsa, g, and h8

4 theo

4 lab

28, 29
Examination4

2 theo

2 lab

30
.15. Infrastructure
–         Amir Wadi Al Khafaji and John R. Tooley, Numerical methods in engineering practice.

–          Advanced Engineering Mathematics, Fifth Edition, C. Ray Wylie and Louis C. Barrett

–          Theory and Problems of Laplace Transforms by Murray R. Spiegel, Shaum’s Outline

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
GE101, GE201, and WRE350Pre-requisites
Minimum number of students
30Maximum number of students
 

  TEMPLATE FOR COURSE SPECIFICATION

 

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

 

 

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources Engineering

 

2. University Department/Centre
Design of Hydraulic Structures, 429 WRDH

This course provides a broad understanding of the basic principles of hydraulic structures. The emphasis is on design of regulators, floor thickness, transitions, energy dissipaters, protection of approaches, gates, pipes, culverts, syphon, weirs, drops, escape and aqueducts.

3. Course title/code & Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Annual System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The academic year is composed of 30-week regular subjects.

5. Modes of Attendance offered
1st and 2nd  / Academic Year 2018 – 20196. Semester/Year
90 hrs / 3 hrs per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
12-                        Introduce basic definitions and introductory concepts of hydraulic structures and their use.

13-                        Introduce the definition, name, location and direction of regulator.

14-                        Introduce the hydraulic calculation of regulators (velocity and discharge).

15-                        Introduce the line of creep and up lift pressure theories (Bligh’s creep theory and Lane’s weighed line of creep method).

16-                        Introduce the flow net (Khosla’s theory / exit gradient, cut off depths and scouring depth)

17-                        Introduce the concrete floor thickness.

18-                        Introduce the transitions (kinds, properties, hydraulics, discharge equation, Mitra’s  method, Hind’s method).

19-                        Introduce the energy dissipation (hydraulic jump, types and efficiency, type of flow D/S of gates and types of stilling basins).

20-                        Introduce protection of approaches U/S and D/S of concrete floors.

21-    Introduce gates (types, water pressure and forces on gates, design principle

for sliding steel gates).

22-    Introduce the closed regulating and conveyance structures (concrete pipes,

reinforced concrete culverts, single and multiple barrels and siphons).

23- Introduce the weirs (sharp and broad crested weirs).

24- Introduce the level control structures (canal outlet, canal escape, falls or

drops).

25-                        Introduce aqueducts.

10·  Learning Outcomes
1-              Demonstrate an understanding of fluid mechanics principles.

2-              Basic definitions and introductory concepts of hydraulic structures and their

use.

3-              Definition, name, location and direction of regulator.

4-              The hydraulic calculation of regulators (velocity and discharge).

5-              The line of creep and up lift pressure theories (Bligh’s creep theory and

Lane’s weighed line of creep method).

6-              The flow net (Khosla’s theory / exit gradient, cut off depths and scouring

depth).

7-              Calculate hydraulic loads on structures.

8-              The concrete floor thickness design.

9-              Design and evaluate water surface profile.

10-         The transitions (kinds, properties, hydraulics, discharge equation, Mitra’s

method, Hind’s method).

11-         The energy dissipation (hydraulic jump, types and efficiency, type of flow

D/S of gates and types of stilling basins).

12-         Protection of approaches U/S and D/S of concrete floors.

13-         Gates (types, water pressure and forces on gates, design principle for sliding

steel gates).

14-         Develop a dimensional design for hydraulic structures appropriate to the flow

regime.

15-         Closed regulating and conveyance structures (concrete pipes, reinforced

concrete culverts, single and multiple barrels and siphons).

16-         Weirs (sharp and broad crested weirs).

17-         Level control structures (canal outlet, canal escape, falls or drops).

18-         Hydraulic design of aqueducts.

      11. Teaching and Learning Methods
6-    Lectures

7-    Tutorials

8-    Homework and Assignments

9-    Tests and Exams

10-                        In-Class Questions and Discussions

      12. Assessment Methods 
3-    Examination, tests, and quizzes

4-    Student engagement during lectures

13. Grading Policy

1. Quizzes:

– There will be (4 – 5) closed books and notes quizzes during the academic

year.

– The quizzes will count 10% of the total course grade.

2. Tests, 4-5 Nos. and will count 20% of the total course grade.

3. Extracurricular Activities, this is optional and will count extra

marks ( 1 – 5 % ) for the student, depending on the type of activity.

4. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on June 2014 from 9:00 AM – 12:00 PM

– The final exam will count 70% of the total course grade

 

14. Course Structure
Assessment MethodTeaching MethodUnit/Module or Topic TitleLOs (Article 10)HoursWeek
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Review

& Rigid Foundations

131
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Introduction – Types of  Hydraulic Structures and their use.2 , 332
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Regulators.3 , 433
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Hydraulic calculations of  regulators.434
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Line of creep and uplift pressure / Bligh’s theory535
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Weighed line of creep / Lane’s method536
1 – 2 of

Article (12)

1 – 5 of

Article (11)

The cutoff depth &

flow net

637
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Khosla’s theory638
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Design example739
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Scouring depth / Floor thickness7 , 8310
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Design example5, 6, 7, 8311
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Transitions (kinds and properties)9,  10312
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Design of transition / Metra method + Hind method.9, 10313
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Design Examples9,10314
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Energy Dissipation / Hydraulic jump type and efficiency.11315
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Energy Dissipation / Hydraulic jump type and efficiency.11316
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Stilling Basins.11317
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Protection of approaches12318
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Design Examples12319
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Gates / Types of  gates.13320
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Design principle for sliding steel gates.13321
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Pipes / losses in pipes.15322
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Reinforced concrete culverts / single barrel.15323
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Reinforced concrete culverts / multiple barrels.15324
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Siphons / Design example.15325
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Design example.15326
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Weirs (sharp and broad crested).16327
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Weirs (sharp and broad crested).16328
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Escapes17329
1 – 2 of

Article (12)

1 – 5 of

Article (11)

Flumes, Aqueduct and Drops.17, 18330
 

15. Infrastructure

Textbook

Varshney –Gupta– Gupta 1977 Theory and Design of Irrigation Structures 3rd. Edition Vol. II

 

References

1-      Chow, V.T.,1959 “Open Channel Hydraulics”

2-      Davis, C.V., 1969 “Handbook of Applied Hydraulics” 3rd Edition.

3-      U.S.B.R. 1958 “Hydraulic Design of Stilling Basins and Bucket Energy Dissipaters

4-      Linsley and Franzini, 1972 “Water Resources Engineering” 2nd Edition.

5-      U.S.B.R. 1974 “Design of Small Canal Structures”

6-      FAO 1975 “Small Hydraulic Structures”.

7-      Varshney – Gupta – Gupta 1977 “Theory and Design of Irrigation Structures” 3rd. Edition Vol. II

8-      Punmia .B.C. & Pande B.B. Lal 1981 “Irrigation and Water Power”.

9-      Santosh Kumar Garg 1997 “Irrigation Eng. & Hyd. Str.”

10-  Larry W. Mays 2005 “Water Resources Eng.”

 

11-  R.K. Sharma & T.K. Sharma 2008 “Irrigation Eng.”.

Dr.K.R. Arora 2009 “Irrigation, Water Power & Water Resources Eng.”.

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

 /Special requirements (include for example workshops, periodicals, IT software, websites)
 /Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
 WRE 320Pre-requisites
 /Minimum number of students
 75Maximum number of students
 

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources

 

2. University Department/Centre
Design of Irrigation Systems: 430 WRDI

The course covers a review of the basic irrigation principles and leads the student gradually through the basic principles of designing on-farm irrigation systems.  The contents of the course introduce the main types of mechanized on-farm irrigation systems and then go through a detailed analysis and design of the various components.

3. Course title/code & Description
B Sc degree in Water Resources Engineering4. Program(s) to which it Contributes
Annual System:  There is only one mode of delivery, which is a “Day Program”.  The students are full time students and on campus.  They attend full day program in face-to-face mode.  The academic year is composed of 30-week regular subjects.  There is no on-line subject which may be used as supplementary material for the class room instruction.5. Modes of Attendance offered
2019-20186. Semester/Year
1207. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
1.      Review basic irrigation principles

2.      Introduce the main types of mechanized on-farm irrigation systems

3.      Present the main steps followed to design irrigation systems

4.      Analyze each component of the various irrigation systems

5.      Discuss various methods of selecting each component of the systems

6.      Discuss the methods of selecting alternative designs

7.      Present the main methods to evaluate the performance of mechanized irrigation systems

10·  Learning Outcomes

The student will be able to have:

a.      An ability to apply knowledge of mathematics, science, and engineering.

b.     An ability to design and conduct experiments as well as to analyze and interpret data.

c.      An ability to design a system, or components, or process to meet desired needs.

d.     An ability to function on multi-disciplinary teams (multi-disciplinary teams mean teams of individuals with similar educational backgrounds focusing on different aspects of a project as well as teams of individuals with different educational backgrounds).

e.      An ability to select proper design alternative.

f.       An understanding of professional and ethical responsibility.

g.     An ability to communicate effectively.

h.     The broad education necessary to understand the impact of engineering solutions in a global and societal context.

i.       A recognition of the need for and an ability to engage in life-long learning (this includes teaching students that the underlying theory is important because the technology changes, coupled with enhancing their self-learning ability).

j.       Knowledge of contemporary issues (this includes presenting students with issues such as the impact of globalization, the outsourcing of both engineering and other supporting jobs as practiced by modern international users).

k.     An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

      11. Teaching and Learning Methods
1.     Lectures

2.     Tutorials

3.     Homework and assignments

4.     Laboratory experiments

5.     Tests and examinations

6.     In-class questions and discussions

7.     Connection between theory and application

8.     In- and out-class oral conversations

      12. Assessment Methods

1.  Monthly examinations

2.  Home works

3.  Class discussions

4.  Final examination

5.  Laboratory reports

13. Grading Policy

1.      Monthly examinations (minimum 4) 2 during each semester, 20%,

2.     Home works, 5%,

3.     Class discussion and attendance, 5%,

4.     Final examination, 70%.

14. Course Structure
Assessment Method

(Article 12)

Teaching Method

(Article 11)

Unit Module or Topic TitleLO’s

(Article 10)

HoursWeek
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Review of irrigation principlesa, b, d, f, h, i , j, k4

2 th

2 tut

1
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Review of irrigation principlesa, b, d, f, h, i , j, k4

2 th

2 tut

2
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Review of basic fluid mechanics principlesa, b, d, f, h, i , j, k4

2 th

2 tut

3
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Introduction to mechanized irrigation systemse, f, g, h4

2 th

2 tut

4
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Types of sprinkle irrigation systemse, f, g, h4

2 th

2 tut

5
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Basic components of sprinkle systemse, f, g, h4

2 th

2 tut

6
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Sprinkler selectionc, h, i, k4

2 th

2 tut

7
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Sprinkler selectionc, h, i, k4

2 th

2 tut

8
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Sprinkler selectionc, h, i, k4

2 th

2 tut

9
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Lateral designa, c, e, h, k4

2 th

2 tut

10
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Lateral designa, c, e, h, k4

2 th

2 tut

11
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Lateral designa, c, e, h, k4

2 th

2 tut

12
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Lateral designa, c, e, h, k4

2 th

2 tut

13
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Mainline dischargesa, c, i4

2 th

2 tut

14
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Methods of designing a mainlinec, e, g, j, k4

2 th

2 tut

15
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Methods of designing a mainlinec, e, g, j, k4

2 th

2 tut

16
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Methods of designing a mainlinec, e, g, j, k4

2 th

2 tut

17
54Evaluation of fixed-grid sprinkle systemsb, f, j4

2 th

2 tut

18
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Introduction to trickle irrigation systemse, f, g, h4

2 th

2 tut

19
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Basic components of trickle systems

 

e, f, g, h4

2 th

2 tut

20
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Emitter selectionc, h, i, k4

2 th

2 tut

21
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Emitter selectionc, h, i, k4

2 th

2 tut

22
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Lateral designa, c, e, h, k4

2 th

2 tut

23
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Mainline designc, e, g, j, k4

2 th

2 tut

24
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Emission Uniformityf, j4

2 th

2 tut

25
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Emission Uniformityf, j4

2 th

2 tut

26
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Sample designs of subunitsb, c, d, e, h4

2 th

2 tut

27
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Sample designs of subunitsb, c, d, e, h4

2 th

2 tut

28
54Evaluation of trickle systemsb, f, j4

2 th

2 tut

29
1, 2, 3, 41, 2, 3, 5, 6, 7, 8Design of gated pipesc, e, g, j, k4

2 th

2 tut

30
15. Infrastructure
  1. Kay. M. 1986, Sprinkler Irrigation System and Practice, Bedford, 141 p.
  2. Keller, J. and Bliesner, R.D. 1990. Sprinkler Trickle Irrigation, Chapman and Hall, New York.
  3. Keller, J. 1989. Sprinkler and Trickle Irrigation. Utah State University. UtaH
Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Compact discs containing pertinent literatureSpecial requirements (include for example workshops, periodicals, IT software, websites)
Field experimentsCommunity-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
WRE 261, WRE 262, WRE 320, WRE 340, WRE 341Pre-requisites
30Minimum number of students
60Maximum number of students
 

.

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
University of Baghdad

College of Engineering

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Groundwater, 431 WRGW

The course introduces the basic definition of ground water aquifers, steady state porous media flow, and well hydraulics

3. Course title/code& Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Semester System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The semester is composed of 15-week regular subjects.

5. Modes of Attendance offered
1st Semester, Academic year 2019-20186. Semester/Year
45 hrs/2 theoretical and 1 tutorial per week7. Number of hours tuition (total)
20188. Date of production/revision of  this specification
9. Aims of the Course
Teaching Principles of Groundwater Hydraulics.
10·Learning Outcomes
Students will learn:

1-    The applications of Darcy’s law

2-    The applications of the continuity equation in groundwater flow systems

3-    The numerical solution of Laplace’s equation in 1D and 2D flow regions

4-    The solution of steady state groundwater flow equations

5-    The solution of non-steady state equations of groundwater flow systems

6-    The application of the method of superposition to groundwater flow systems

7-    The effect of barrier boundaries on the flow of groundwater

11.Teaching and Learning Methods
1-Lecture notes

2-Computer Software

3- Internet sources

12. Assessment Methods

1-Written Exams

2-Computer project

 

13. Grading Policy

1- Three monthly exams =30%

2- Final exam = 70%

14. Course Structure
Assessment Method

(Article 12)

Teaching Method         (Article 11)Topic TitleLO’s

(Article 10)

HoursWeek
1,21,2,3Groundwater and Aquifers1,231
1,21,2,3Applications of DARCY’s law1,232
1,21,2,3Applications of DARCY’s law1,233
1,21,2,3Applications of DARCY’s law1,234
1,21,2,3Numerical solution of Laplace’s equation.335
1,21,2,3Numerical solution of Laplace’s equation.336
1,21,2,3Steady groundwater flow systems.437
1,21,2,3Steady groundwater flow systems.438
1,21,2,3Steady groundwater flow systems.439
1,21,2,3Steady groundwater flow systems.4310
1,21,2,3Unsteady groundwater flow systems.5311
1,21,2,3Unsteady groundwater flow systems.5312
1,21,2,3Superposition and Bounded aquifers6313
1,21,2,3Superposition and Bounded aquifers6314
1,21,2,3Superposition and Bounded aquifers6315
15. Infrastructure
1.      Todd, D.K. and Mays, L.W. 2005, Groundwater Hydrology (Third Edition), John Wiley and Sons, NJ USA.

2.      Mays, L.W. (2012), Ground and Surface Water Hydrology. John Wiley ad Sons, NJ USA.

3.      Mohammed, T.A. and Huat, B.K. (2004), Groundwater Engineering and Geotechnique,  Universiti Putra Malaysia Press, Serdang, Selangor, Malaysia.

 

 

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Fundamentals of Ground Water plus EXCEL spread sheet design of Laplace’s EquationSpecial requirements (include forexample workshops, periodicals,IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship,field  studies)

16. Admissions
Pre-requisites
Minimum number of students
45 – 50Maximum number of students
 

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
University of Baghdad

College of Engineering

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Drainage Engineering, 432 WRDE

The course introduces the basic principles of drainage engineering including flow pattern of a pipe drainage system, analysis of the horizontal, vertical and radial components of flow, derivation and application of the steady and non-steady state equations, and application of the theory of an anisotropic model in drainage engineering.

 

3. Course title/code& Description
B Sc degree in Water Resources Engineering (WRE)4. Program(s) to which it Contributes
Semester System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

students, and on campus. They attend

full day program in face-to-face

mode. The semester is composed of 15-week regular subjects.

5. Modes of Attendance offered
2nd Semester, 2019-20186. Semester/Year
45 hrs / 3 hrs per week7. Number of hours tuition (total)
20188. Date of production/revision of  this specification
9. Aims of the Course
Teaching Drainage Engineering principles and help to the student to design drainage systems..
10·Learning Outcomes
Students will learn:

1-    Flow pattern of a pipe drainage system

2-    Analysis of the horizontal, vertical and radial components of flow

3-    Derivation and application of the steady state equations

4-    Derivation and applications of the non-steady state equations

5-    Application of the theory of an anisotropic model in drainage engineering

6-    How to design composite pipe collectors.

7-    How to design interceptor drainage system.

11.Teaching and Learning Methods
1-    Lecture notes

2-    Computer software

3-     Internet sources

12. Assessment Methods

1- Written exams

2- Quizzes and a computer project

13. Grading Policy

1- Three monthly exams each= 10%

2-Final exam =70%

14. Course Structure
Assessment MethodTeaching MethodTopic TitleLO’sHoursWeek
1,21,2,3Groundwater Drainage Systems1,2317
1,21,2,3Design of Pipe Drainage Systems for Groundwater Control1,2318
1,21,2,3Design of Pipe Drainage Systems for Groundwater Control1,2319
1,21,2,3Steady State Pipe Drainage Design Equations.3320
1,21,2,3Steady State Pipe Drainage Design Equations.3321
1,21,2,3Steady State Pipe Drainage Design Equations.3322
1,21,2,3Unsteady State Pipe Drainage Design Equations.4323
1,21,2,3Unsteady State Pipe Drainage Design Equations.4324
1,21,2,3Unsteady State Pipe Drainage Design Equations.4325
1,21,2,3Pipe Drainage Design of Anisotropic Soils.5326
1,21,2,3Pipe Drainage Design of Anisotropic Soils.5327
1,21,2,3Hydraulic Design of Lateral and Collector Pipe Drains.6328
1,21,2,3Hydraulic Design of Lateral and Collector Pipe Drains.6329
1,21,2,3Interceptor Drainage7330
 

15. Infrastructure

1.      Ministry of Irrigation (1983) “Design Manual for Irrigation and Drainage “ Ministry of irrigation, Baghdad. Iraq  in cooperation with pencol Engineering  consultants, London, England.

2.      G.S .Ghuman (1990) “ Design of typical irrigation and drainage project “ Ministry of irrigation / state Organization for Land Reclamation ,Baghdad ,Iraq .

3.      Vaughan .E. Hansen, Orson  W, Israelsen and Glen  E. Stringham (1980) “Irrigation Principle and Practices”.

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Guidelines and computer programs for the planning and design of land drainage systems.

Software DRAIN.

Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship field  studies)

16. Admissions
Pre-requisites
Minimum number of students
45 – 50Maximum number of students
 

  TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources Engineering2. University Department/Centre
Projects Management, 434 WRPM

This course introduces the description of engineering projects management, methods procedure and equipment. Topics covered:

Principle of management and engineering projects, stages of executions engineering projects, engineering contract, methods of executions engineering projects, types of contracts, planning for schedule projects, method technique for evaluation review method, allocated resources, planning the work layout,  equipment and machines for earth work, types of tractors, gradability, bulldozer, shovel, scrapers, power hovel, dragline, trucks, compacting machines and methods, stabilization of the soil,  grader, and estimation.

This course is taught through 3 hrs per week, 2 hrs theoretical and 1 hr tutorial.

3. Course title/code & Description
B Sc degree in Water Resources Engineering (WRE)4. Programme(s) to which it Contributes
Annual system: there is only one mode of delivery, which is a day program. The students are full time students, and on campus. They attend full day program in face- to face mode. The academic year is composed of 30 weeks regular subjects.5. Modes of Attendance offered
1st and 2nd,  Academic year 2019-2018.6. Semester/Year
90 hrs/3 hrs per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
1. Introduce basic definitions and introductory concepts of management.

2. Introduce the description for construction projects stages.

3- Introduce the description of engineering contract, parts of the contract, and

description of responsibility for each party.

4. Explain and description of methods of execution the works, advantages and

disadvantages for each method.

5. Introduce the principles of planning for schedule projects, description of bar chart

method and analysis the network methods by using the critical path method.

6. Introduce the principles of techniques evaluation review project, statistical

distribution method for estimation probability of completion the project.

7. Description how to planning the layout the project and distribution layout for the

project campus.

8. General description of machines required for earth work and the production,

physical properties of soil, swelling, shrinkage, rolling resistance, and slopes.

9. Description the types of tractors, their moving, loads, speed and slopes required

for best efficiencies and production.

10- Explain the principle of gradability, and effecting on production of the machines

infiltration process, rate of infiltration and basic infiltration.

11- Description the basic work of bulldozer and calculation the production of the

machine.

12- Description the basic work of shovel and calculation the production of the

machine.

13- Description the basic work of scraper and calculation the production of the

machine.

14- Description the basic work of power shovel and calculation the production of

the machine.

15- Description the basic work of dragline and calculation the production of the

machine.

16- Description the basic work of trucks and calculation the production of the

machine.

17- Description and definition of the compaction, theory of bulb for load

distribution, procedure methods and equipment and machines used.

18- Calculation for production of compaction machines.

19- Description the basic work of grader and calculation the production of the

machine.

20- Definition of estimation, how to estimate the materials for engineering projects.

10·  Learning Outcomes
 

a. Define the management and engineering projects.

b. Define the stages for engineering projects, the parts of the projects, owner,

engineer and the contractor, and their responsibility.

c. Define and description the engineering contract, parts of the contract and

conditions of the contract.

d. Description methods of execution the projects, advantages and disadvantages for

each methods, and to learn how to select the proper method for construction an

engineering project.

e. Understand the procedure for the planning of schedule the engineering project by

using bar chart method and network analysis method and find the completion data

of the project by critical path method (CPM).

f. Formulate and solve the probability completion of the project by using techniques

evaluation review method (PERT), and knowing how to use the normal

distribution method.

g. Define the method procedure for allocation resources, knowing the procedure for

allocation for materials, labor, and equipment, and to estimates the cost per day or

for the total cost required for the resources of the project.

h. Describe the layout of the work in the project area, how to arranged the campus

of the project, engineers, labors, materials, equipment, stores fence, entrance,

street, and movement of the machines.

i. Define the machine required for the earth work and calculate the production,

physical properties of the soil, types of the soil to be deal with, power required to

move the machines on the surface, rolling resistance power to overcome the

surface slope and the rolling resistance, factors affecting the efficiency of the

machines (altitude and temperature), cycle time, define the fixed and variable

times, cycle time and numbers of cycle.

j. Calculate the gradability required for the machine and related that with the

production of the machine.

k. Describe the type of the tractors, crawler and rubber tires types.

l. Describe the bulldozer and to know how to calculate the production of the

bulldozer for different speed and cycle time.

m. Describe the shovel and to know how to calculate the production of the shovel

for different speed and cycle time.

n. Describe the scraper and to know how to calculate the production of the

scraper for different speed and cycle time.

o. Describe the power shovel and to know how to calculate the production of the

power shovel for different speed and cycle time.

p. Describe the dragline and to know how to calculate the production of the

dragline for different speed and cycle time.

q. Describe the truck an

d to know how to calculate the production of the truck for

different speed and cycle time.

r. Describe and define the compaction, procedure test for the compaction, theory

of the bulb for load distribution, types of equipment for compaction, and

calculating the production of the compactor machine.

s. Describe and define the stabilization of the soil, methods used for the

stabilization.

t. Describe and define the estimation, estimation for earth excavation for

foundation,  estimation for tiles work, external and internal walls plastering,

concrete preparing, mixing, transporting,  and putting in the place, steel work,

paintings work for external and internal works and construction concrete works.

u. Be able to apply mathematics science and statistical tools to projects planning.

v. Identify, and solve engineering machines production problems.

      11. Teaching and Learning Methods
a- Lectures

b- Tutorials

c- Homework and Assignments

d- Tests and Exams

e- In-Class Questions and Discussions

f- In class question work

      12. Assessment Methods

1. Examinations and Quizzes

2. Homework

3. Student Engagement during Lectures

4. In class questions work

14. Course Structure
Assessment MethodTeaching MethodLOs (article 10)Topic titleHoursWeek
1-4 of article (12)a-f of article (11)a, bIntroduction to Management and engineering projects31
1-4 of article (12)a-f of article (11)CEngineering contract32
1-4 of article (12)a-f of article (11)DProcedure for execution projects33
1-4 of article (12)a-f of article (11)e, fMethods for execution projects34
1-4 of article (12)a-f of article (11)e, f, uPlanning for scheduling the projects35
1-4 of article (12)a-f of article (11)e, f, uPlanning for scheduling the projects36
1-4 of article (12)a-f of article (11)e, f, uTechniques for estimation review project37
1-4 of article (12)a-f of article (11)GAllocation resources38
1-4 of article (12)a-f of article (11)h, i, vMachines for earth work39
1-4 of article (12)a-f of article (11)h, i, vMachines for earth work310
1-4 of article (12)a-f of article (11)JGradability311
1-4 of article (12)a-f of article (11)k, vTractor312
1-4 of article (12)a-f of article (11)k, vTractor313
1-4 of article (12)a-f of article (11)l, vBulldozer314
1-4 of article (12)a-f of article (11)m, vShovel15
1-4 of article (12)a-f of article (11)n, vScraper316
1-4 of article (12)a-f of article (11)o, vPower shovel317
1-4 of article (12)a-f of article (11)o, vPower shovel318
1-4 of article (12)a-f of article (11)p, vDragline319
1-4 of article (12)a-f of article (11)p, vDragline320
1-4 of article (12)a-f of article (11)q, vTrucks321
1-4 of article (12)a-f of article (11)q, vTrucks322
1-4 of article (12)a-f of article (11)RSoil compaction323
1-4 of article (12)a-f of article (11)r, vMethods of compaction machines324
1-4 of article (12)a-f of article (11)SSoil stabilization325
1-4 of article (12)a-f of article (11)SSoil stabilization326
1-4 of article (12)a-f of article (11)TEstimation327
1-4 of article (12)a-f of article (11)TEstimation328
 

1-4 of article (12)a-f of article (11)tEstimation329
1-4 of article (12)a-f of article (11)tEstimation330

15. Infrastructure

Textbook

“Construction Planning, Equipment and Methods” by R.L. Peurifoy.

References

1-    “Project Management- A managerial Approach” by Merdith Mantel, Wiely.

2-    Web-Site notebooks and research papers.

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Pre-requisites
40Minimum number of students
55Maximum number of students
 

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Analysis of Water Resources Systems, 435 WRAS

Water Resources Systems Analysis refers to the application of science of optimization in the field of water resources engineering. The course provides a basic concepts and methods that can help the water resources engineer in making his decision. The course is focused on the concepts and procedures used in formulation and solving problems in the field of water resources engineering. The students will be familiar with the applications in this field of engineering that can be addressed using linear and nonlinear optimization.

3. Course title/code & Description
B Sc degree in Water Resources  Engineering (WRE)4. Program(s) to which it Contributes
One time, day time on campus5. Modes of Attendance offered
1st and 2nd Semesters, Academic year  2018 –20196. Semester/Year
60 hours, 2 hrs theoretical per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course:  to teach the student the basic concepts and methods to select the optimal solution among the feasible solutions and its applications in water resources.
10· Learning Outcomes the student  in the field of water resources engineering will be able to:

a-        understand the concepts of optimization,

b-       formulate optimization problems in mathematical forms,

c-        manipulate the mathematical forms,

d-        solve linear mathematical forms, and

e-       solve nonlinear mathematical forms.

11. Teaching and Learning Methods

a- lectures,

b- tutorials, and

c- supervised team work..

12. Assessment Methods

a- homework,

b- quizzes,

c- major examination during the course, and

d- final examination.

13. Grading Policy

– Quizzes and Homework 15%

–  Thee major examinations  15%

–  Final examination 70%

14. Course Structure
Assessment

Method

(Article 12)

Teaching

Method

(Article 11)

Unit/Module or

Topic Title

LO’s

(Article 10)

HoursWeek
a, b, c and daIntroductionA21
a, b, c and da, b, and cMathematical formulationa and b42-3
a, b, c and da, b, and cProblem manipulationa, b and c24
a, b, c and da, b, and cLinear problems: graphical methoda and d45-6
a, b, c and da, b, and cOne phase simplex methoda and d47-8
a, b, c and da, b, and cTwo phase simplex methoda and d29
Examination210
a, b, c and da, b, and cDuality in linear problemsa and d411-12
a, b, c and da, b, and cTransportation problemsa and d413-14
a, b, c and da, b, and cAssignment problemsa and d215
a, b, c and da, b, and cExamination216
a, b, c and da, b, and cNetwork problemsa and d417-18
a, b, c and da, b, and cIntroduction to nonlinear problemsa and e219
a, b, c and da, b, and cExtreme values of functionsa and e220
a, b, c and da, b, and cMethods of solutiona and e221
a, b, c and da, b, and cNewton methoda and e222
a, b, c and da, b, and cHook and Jeeves Methoda and e223
a, b, c and da, b, and cNelder and Mead methoda and e224
a, b, c and da, b, and cSteepest ascent methoda and e225
a, b, c and da, b, and cRosenbrook  methoda and e226
Examination227
a, b, c and daOptimal management of water resources428-29
Examination230

.

 

15. Infrastructure

–  Hamdy A. Taha , Operation Research.

–  McCormick, G.P., Nonlinear Programming: Theory and Applications, Wiley, Hoboken, NJ.

–  Lectures notes of Prof. Dr. A. M. Ali

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include for example workshops, periodicals, IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
GE101, GE201, and WRE355Pre-requisites
Minimum number of students
30Maximum number of students
 

 TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
University of Baghdad

College of Engineering

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Dams Engineering 436 WRDE

This course introduces the description of Dams type, investigation ,studies ,design and supervision of dams ,reservoir and hydropower projects

The course is

taught through 3 hrs per week, 2

Theoretical, 1 tutorial

3. Course title/code & Description
B Sc degree in Water Resources Engineering  (WRE)4. Program(s) to which it Contributes
Annual System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

Students and, on campus. They attend full day program in face-to-face mode. The academic year is composed of 30-week regular subjects.

5. Modes of Attendance offered
1st and  2nd , Academic Year 2018 – 20196. Semester/Year
90 hrs / 3 hrs per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
17.  Definitions of Dams and dam investigation.

18.  Definitions reservoir and determination capacity of reservoir

19.  Determine reservoir sedimentation and dam grouting

20.  Definitions of earth dam and type section

21.  Explain Preliminary design of Earth dams

22.  Explain the seepage analysis and control

23.  Definitions dam failure and Stability of earth dams

24.  Explain types of gravity dams and forces acting on gravity dams

25.  Explain Preliminary design of gravity dams

26.   Definition and types of spillways

27.   Planning for power house and Energy dissipaters

10·  Learning Outcomes
At the end of the class, the student will be able to:

i.        Understand general introduction about dam and  investigation

j.        Understand dam foundation and grouting

k.      Determination capacity of reservoir

l.        Understand Preliminary design of Earth dams

m.    Understand the seepage analysis and control for earth dam

n.      dam failure and Stability of earth dams

o.      Understand types of gravity dams and forces acting

p.      Understand  and Explain Preliminary design of gravity dams

q.      Understand  and Definition types of spillways

r.       Planning for power house and Energy dissipaters

      11. Teaching and Learning Methods
1. Lectures

2. Tutorials

3. Homework and Assignments

4. Tests and Exams

5. In-Class Questions and Discussions

6. Connection between Theory and Application

7. Extracurricular Activities

      12. Assessment Methods

1. Examinations, Tests, and Quizzes

2. Extracurricular Activities

3. Student Engagement during Lectures

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor)

 

13. Grading Policy

1. Quizzes:

– There will be a (6 – 8) closed books and notes quizzes during the academic

year.

– The quizzes will count 5% of the total course grade.

2. Extracurricular Activities, this is optional and will count extra marks ( 1 – 5 % )

for the student, depending on the type of activity.

3. Exams:

– There will be three exams during the academic course,

– The exams will count 20% of the total course grade.

4. Final Exam:

– The final exam will be comprehensive, closed books and

notes, and will take place on January 2018 from 9:00 AM – 12:00 PM

in class rooms (w1+w2)

– The final exam will count 70% of the total course grade

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LO’s

( Article

10 )

HoursWeek
1 – 4 of article (12)1-7 of article (11)Introductiona2 (theo.) +1 (tut.)1
1 – 4 of article (12)1-7 of article (11)Investigation for damsa,b2 (theo.) +1 (tut.)2
1 – 4 of article (12)1-7 of article (11)Determination capacity of reservoira,b,c2 (theo.) +1 (tut.)3
1 – 4 of article (12)1-7 of article (11)Reservoir sedimentationa,b,c,d2 (theo.) +1 (tut.)4
1 – 4 of article (12)1-7 of article (11)Types of damsa,b,c,d2 (theo.) +1 (tut.)5
1 – 4 of article (12)1-7 of article (11)Dams groutinga,b,c,d2 (theo.) +1 (tut.)6
1 – 4 of article (12)1-7 of article (11)Types of earth damsa,b,c,d2 (theo.) +1 (tut.)7
1 – 4 of article (12)1-7 of article (11)Preliminary sectiona,b,c,d2 (theo.) +1 (tut.)8
1 – 4 of article (12)1-7 of article (11)Design of preliminary sectiona,b,c,d,e2 (theo.) +1 (tut.)9
1 – 4 of article (12)1-7 of article (11)Seepage analysisa,b,c,d,e2 (theo.) +1 (tut.)10
1 – 4 of article (12)1-7 of article (11)Seepage controla,b,c,d,e2 (theo.) +1 (tut.)11
1 – 4 of article (12)1-7 of article (11)Dams failuresa,b,c,d,e,f2 (theo.) +1 (tut.)12
1 – 4 of article (12)1-7 of article (11)Stability of earth damsa,b,c,d,e,f2 (theo.) +1 (tut.)13
1 – 4 of article (12)1-7 of article (11)Types of gravity damsa,b,c,d,e,f,g2 (theo.) +1 (tut.)14
1 – 4 of article (12)1-7 of article (11)Forces acting on gravity damsa,b,c,d,e,f,g2 (theo.) +1 (tut.)15
1 – 4 of article (12)1-8 of article (11)Forces acting on gravity damsa,b,c,e2 (theo.) +1 (tut.)16
1 – 4 of article (12)1-8 of article (11)Preliminary designa,b,c,d,e,2 (theo.) +1 (tut.)17
1 – 4 of article (12)

 

1-8 of article (11)Stability of gravity damsa,b,c,d,e,2 (theo.) +1 (tut.)18
1 – 4 of article (12)1-8 of article (11)Arch damsa,b,c,d,e,2 (theo.) +1 (tut.)19
1 – 4 of article (12)1-8 of article (11)Types of spillwaysa,b,c,d,e,f,g2 (theo.) +1 (tut.)20
1 – 4 of article (12)1-8 of article (11)Types of spillwaysa,b,c,d,e,f,g,h2 (theo.) +1 (tut.)21
1 – 4 of article (12)1-8 of article (11)Design of ogee spillwaya,b,c,d,e,f,g,h2 (theo.) +1 (tut.)22
1 – 4 of article (12)1-8 of article (11)Design of ogee spillwaya,b,c,d,e,f,g,h,2 (theo.) +1 (tut.)23
1 – 4 of article (12)1-8 of article (11)Energy dissipatersa,b,c,d,e,f,g,h,I,2 (theo.) +1 (tut.)24
1 – 4 of article (12)1-8 of article (11)Energy dissipatersa,b,c,d,e,f,g,h,I,2 (theo.) +1 (tut.)25
1 – 4 of article (12)1-8 of article (11)Energy dissipatersa,b,c,d,e,f,g,h,I,j,2 (theo.) +1 (tut.)26
1 – 4 of article (12)1-8 of article (11)Planning for power housea,b,c,d,e,f,g,h,I,j,2 (theo.) +1 (tut.)27
1 – 4 of article (12)1-8 of article (11)Planning for power housea,b,c,d,e,f,g,h,I,j,2 (theo.) +1 (tut.)28
1 – 4 of article (12)1-8 of article (11)Flow and power duration curvesa,b,c,d,e,f,g,h,I,j,2 (theo.) +1 (tut.)29
1 – 4 of article (12)1-8 of article (11)Elements of powerhousea,b,c,d,e,f,g,h,I,j,2 (theo.) +1 (tut.)30
15. Infrastructure

 

Textbook

“Irrigation Drawing”, Arabic book by Abd Al-Riza, Abd Al-Rasool, Baghdad, 1992

 

 

.

 

References

Ø   Irrigation Water  Power and Water Resources Engineering  By K.R.Arrora

Ø   Earth –Rock   Dams  By James.LSherard

Ø   Design of small dams U.S.B.R

Others

1. Notebook prepared by the instructor of the course

2. Collection of sheets of solved and

unsolved problems and Exams questions

 

 

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

· Available websites related to the subject.

· Extracurricular activities.

Special requirements (include for example workshops, periodicals, IT software, websites)
·        Extra lectures by foreign guest lecturers.Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
GE 101 and  GE 201Pre-requisites
 40Minimum number of students
60Maximum number of students
 

                TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Applied Hydraulics, 437 WRAH

This course is designed to be given to students in the field of water resources engineering. The hydraulic principles will applied to solve different practical problems related to: pumping stations, water distribution networks, hydraulic turbines, and unsteady flow in pipes and open channels.

3. Course title/code & Description
B Sc degree in Water Resources  Engineering (WRE)4. Program(s) to which it Contributes
One time, day time on campus5. Modes of Attendance offered
The second semester of the academic year  2018 –20196. Semester/Year
45 hours, 2 hrs theoretical and 1 hr tutorial per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course:  To apply the theoretical basics of hydraulics, which students had learned in previous years, in different practical applications.
10· Learning Outcomes the student will be able to:

a-         analyze and design of pumping systems hydraulics,

b-       estimate the water demand

c-     analyze water distribution networks,

d-    analyze turbine systems hydraulics,

e-     understand water hammer phenomenon and analyze some simple cases,

f-      understand unsteady flow in open channels, and

g-    work in teams.

11. Teaching and Learning Methods

a- lectures,

b- tutorials, and

c- supervised team work.

12. Assessment Methods

a- homework,

b- quizzes,

c- major examination during the course, and

d- final examination.

13. Grading Policy

– Quizzes and Homework 15%

–  Two major examinations  15%

–  Final examination 70%

14. Course Structure
Assessment

Method

(Article 12)

Teaching

Method

(Article 11)

Unit/Module or

Topic Title

LO’s

(Article 10)

HoursWeek
a, b, c, and da, b, and cIntroduction, Pumps types and its hydraulicsa and g3

2 theo

1 tut

16
a, b, c, and da, b, and cPumps curves and pumps connectiona and g3

2 theo

1 tut

17
a, b, c, and da, b, and cSimilarity, cavitation and selection of pumpsa and g6

4 theo

2 tut

18, 19
a, b, c, and da, b, and cEstimation of Water demandb and g3

2 theo

1 tut

 

20
a, b, c, and da, b, and cWater distribution system analysis: Hardy Cross methodc and g6

4 theo

2 tut

21, 22
Review and examination3

2 theo

1 tut

 

23
a, b, c, and da, b, and cHydraulic Turbinesd and g6

4 theo

2 tut

24, 25
a, b, c, and da, b, and cWater Hammere and g6

4 theo

2 tut

26, 27
a, b, c, and da, b, and cUnsteady flow in open channelsf and g6

4 theo

2 tut

28, 29
Review and examination3

2 theo

1 tut

30

.

15. Infrastructure
–         Chaudary, M. H., Transient analysis.

–          Karassik, H. et al., Pumps Hand Book.

 

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include for example workshops, periodicals, IT software, websites)
Field visitsCommunity-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
WRE320Pre-requisites
Minimum number of students
30Maximum number of students

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
College of Engineering

University of Baghdad

1. Teaching Institution
Department of Water Resources Engineering2. University Department/Centre
Engineering Economy,  438 WREE

This course introduces a preliminary description of engineering economy. It is also useful for engineers in business-related curricula concerned with economic analysis of alternatives by using sophisticated nonmathematical methods. The course is designed to provide a background of the working system to finance companies.  The course provides a means to evaluate  engineering projects and their alternatives.

3. Course title/code& Description
B.Sc. in Water Resources Engineering (WRE)4. Program(s)  to which it Contributes
Annual system; There is only 0ne mode of delivery, which is a “Day Program “.The students are full time students, and on campus. They attend  full day program in face-to-face. The academic year is composed of 15-week regular subjects. Each week there are three lectures, and each lecture 50-mintues.5. Modes of Attendance offered
1st Semester6. Semester/Year
457. Number of hours tuition (total)
 20188. Date of production/revision of  this specification
9. Aims of the Course

1- Graduate water resources engineers to serve in water resource management.

2- Improving the teaching and the administrative activities to meet international

accreditation standards and the mission of department.

3- Improving the academic abilities of the faculty and attracting highly skilled

personnel.

4- Improve the abilities of management and technical support staff and attract the

highly skilled for employment.

5-Optimum use of resources and potential of the department.

10·Learning Outcomes

At the end of the class, the student will be able to:

a-Define economics in general and all terms that will be used at the course .

b- Know about types of interest and their effects on present value and estimation

of the future value.

c- Give the students a sound understanding of the basic aspects of the subject and

some insight into approaches that can be used for making sound economic

decisions concerning the type of problem he is likely to encounter in  his

engineering career.

d- Know about the depreciation and its effect on the asset.

e- Acquire a solid base for further studies after graduation ,which will permit him to

understand and use more advanced, and constantly developing ,procedures

needed to help in analyzing the more complex economic problem that he may

encounter in his career.

f-  Evaluate engineering projects.

g- Be able to carry out economics studies and alternatives.

11.Teaching and Learning Methods

1-Lectures

2- Tutorials

3-Homework and Assignment

4-Test and Exams

5-In class Questions and Discussion

12. Assessment Methods

Survey of Alumni.-

-The related committees in the department such as scientific, QA, student affair.

-Employment trends of our graduates will be tracked, e.g., place of employment

and job title.

13. Grading Policy

1-There will be 3 – 4 closed book and notes examinations, these

examinations will count 30% of the total grade.

2-The final exam will be comprehensive, closed book and notes, and will

take place in January 2014.

-The final exam will count 70% of total course grade

14. Course Structure
Assessment MethodTeaching MethodTopic TitleLO’sHoursWeek
1-3 of article (12)1-5 of  article (11)Introductiona3 th1
1-3 of article (12)1-5 of (11) articleInterest –Simplea, b3 th2
1-3 of article (12)1-5of article  (11)Compound Interesta, b3 th3
1-3 of article (12)1-5 of article  (11)Nominal Interestb, c3 th4
1-3 of article (12)1-5 of article  (11)Depreciation and Valuationd3 th5
1-3 of article (12)1-5of article  (11)Straight Line Methodd3 th6
1-3 of article (12)1-5 of  article (11)Declining Balance Methodd3 th7
1-3 of article (12)1-5 of   article (11)The Sum of Year Digits Methodd3 th8
1-3 of article (12)1-5 of  article (11)The Sinking Fund Methodd3 th9
1-3 of  article (12)1-5 of article   (11)Basic Method for Making Economic Studiese, f       3 th10
1-3 of article (12)1-5 of article  (11)I.R.R  Methode, f3 th11
1-3 of article (12)1-5 of article  (11)E.R.R. Methodf, g3 th12
1-3 of article (12)1-5 of article  (11)A.W. Methodf, g3 th13
1-3 of article (12)1-5 of article  (11)P.W. Methodf, g3 th14
1-3 of article (12)1-5 of  article (11)Alternativesg3 th15
15. Infrastructure
Text Book

1-      Engineering Economy (fifth edition ),by E. Paul De Garmo ,Jhon R. Canada.1973,Macmillan   Publishing Co.,Inc.

2-      Fundamentals of Engineering Economics by Chan S. Park

3-      Engineering Economic Analysis, Ninth Edition, by Donald G. Newnan

 

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

Special requirements (include forexample workshops, periodicals,IT software, websites)
Community-based facilities

(include for example, guest

Lectures , internship ,field  studies)

16. Admissions
Pre-requisites
/Minimum number of students
50Maximum number of students

FOR COURSE SPECIFICATION

HIGHER EDUCATION  PERFORMANCE REVIEW: PROGRAM REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and   demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the program specification.
University of Baghdad

College of Engineering

1. Teaching Institution
Department of Water Resources2. University Department/Centre
Water Quality 439 WREC

This course introduces description of water quality in water surface and lake and groundwater

The course is

taught through 3 hrs per week, 2

Theoretical, 1 tutorial.

3. Course title/code & Description
B Sc degree in Water Resources Engineering (WRE)4. Programme(s) to which it Contributes
Semester System ; There is only one

mode of delivery, which is a “Day

Program”. The students are full time

Students and, on campus. They attend

full day program in face-to-face mode. The academic semester is composed of 15-week regular subjects.

5. Modes of Attendance offered
2nd Semester,  Academic year 2018 – 20196. Semester/Year
45 hrs / 3 hrs 2 theoretical and 1 hr tutorial per week7. Number of hours tuition (total)
20188. Date of production/revision  of  this specification  
9. Aims of the Course
1.      General review of open channel hydraulic

2.      Definitions and introductory concepts of water quality.

3.      Definitions and introductory concepts of water and pollution processes in
rivers, lakes and ground water

4.      Definitions of surface water pollution

5.      Explain and definition source of pollution type

6.      Explain discharge of pollutant into river and mixing zone

7.      Definitions conservative and non-conservative pollutant

8.      Explain and definition surface water impurities

9.      Definitions BOD and Oxygen sag curve

10.  Definition Iraqi law for water quality protection in river No. 25 for 1967

11.  Assessment the water quality in Iraq rivers and surface water

10·  Learning Outcomes
At the end of the class, the student will be able to:

a.       Define and introduce concepts of water quality

b.       Understand and apply concepts of water quality and pollution processes in
rivers and lakes

c.       Understand and apply the different steps of the monitoring cycle in rivers and
lakes;

d.       Understand the basic concepts of groundwater quality and monitoring;

e.       Apply common statistical techniques for water quality data evaluation;

f.        Design sound and sustainable freshwater quality monitoring and assessment
programs under specified conditions.

g.       Understand modeling BOD/DO in a river system

h.       Understand and apply the Iraqi law for water quality protection in river No. 25 for 1967

i.         Understand and apply the water quality in Iraq rivers and water surface

      11. Teaching and Learning Methods
1. Lectures

2. Tutorials

3. Homework and Assignments

4. Tests and Exams

5. In-Class Questions and Discussions

6. Connection between Theory and Application

7. Extracurricular Activities

      12. Assessment Methods

1. Examinations, Tests, and Quizzes

2. Extracurricular Activities

3. Student Engagement during Lectures

4. Responses Obtained from Students, Questionnaire about

Curriculum and Faculty Member (Instructor)

13. Grading Policy

1. Quizzes:

– There will be a (6 – 8) closed books and notes quizzes during the academic

year.

– The quizzes will count 5% of the total course grade.

2. Extracurricular Activities, this is optional and will count extra marks (1 – 5 %)

for the student, depending on the type of activity.

3. Exams:

– There will be three exams during the academic course,

– The exams will count 20% of the total course grade.

4. Final Exam:

– The final exam will be comprehensive, closed books

– The final exam will count 70% of the total course grade

14. Course Structure
Assessment

Method

Teaching

Method

Unit/Module or

Topic Title

LOs

( Article

10 )

HoursWeek
1 – 4 of article (12)1-7 of article (11)General review of open channel hydraulica2 (theo.) +1 (tut.)1
1 – 4 of article (12)1-7 of article (11)concepts of water qualitya,b2 (theo.) +1 (tut.)2
1 – 4 of article (12)1-7 of article (11)Concentration expressinga,b,c2 (theo.) +1 (tut.)3
1 – 4 of article (12)1-7 of article (11)pollution typea,b,c,d2 (theo.) +1 (tut.)4
1 – 4 of article (12)1-7 of article (11)pollutant discharge into rivera,b,c,d2 (theo.) +1 (tut.)5
1 – 4 of article (12)1-7 of article (11)conservative pollutanta,b,c,d2 (theo.) +1 (tut.)6
1 – 4 of article (12)1-7 of article (11) non conservative pollutanta,b,c,d2 (theo.) +1 (tut.)7
1 – 4 of article (12)1-7 of article (11)Impurities in surface watera,b,c,d2 (theo.) +1 (tut.)8
1 – 4 of article (12)1-7 of article (11)Impurities in lakea,b,c,d,e2 (theo.) +1 (tut.)9
1 – 4 of article (12)1-7 of article (11)Impurities in ground watera,b,c,d,e2 (theo.) +1 (tut.)10
1 – 4 of article (12)1-7 of article (11)BOD curvea,b,c,d,e2 (theo.) +1 (tut.)11
1 – 4 of article (12)1-7 of article (11)Oxygen sag curvea,b,c,d,e,f2 (theo.) +1 (tut.)12
1 – 4 of article (12)1-7 of article (11)Oxygen sag curvea,b,c,d,e,f2 (theo.) +1 (tut.)13
1 – 4 of article (12)1-7 of article (11)Iraqi law  No. 25 for 1967a,b,c,d,e,f,g2 (theo.) +1 (tut.)14
1 – 4 of article (12)1-7 of article (11)water quality in Iraq riversa,b,c,d,e,f,g2 (theo.) +1 (tut.)15
 

15. Infrastructure

Textbook

Principles of Water Quality Control by T.H.Y. Tebbutt 5ed. 1998

References

1.     Environmental Engineering by Davis& Cornwell 3rd ed. McGrawHill

2.     Environmental Engineering by Kiely McGrawHill

3.     Water Resources Engineering by Linsley &Franzini 3rd ed.

Others

1. Notebook prepared by the instructor of the

course

2. Collection of sheets of solved and

solved problems and Exams questions

 

Required reading:

·  CORE TEXTS

·  COURSE MATERIALS

·  OTHER

· Available websites related to the subject.

· Extracurricular activities.

Special requirements (include for example workshops, periodicals, IT software, websites)
·        Extra lectures by foreign guest lecturers.Community-based facilities

(include for example, guest

Lectures , internship , field  studies)

16. Admissions
Pre-requisites
 40Minimum number of students
60Maximum number of students

.

1- www.edx.org
‏2- www.coursera.org
‏3- www.udacity.com
‏4- www.edraak.org
‏5- www.class.stanford.edu
‏6- www.venture-lab.org
‏7- www.education.10gen.com
‏8- www.openhpi.de
‏9- www.ocw.mit.edu
‏10- www.khanacademy.org
‏11- www.oli.cmu.edu
‏12- www.oyc.yale.edu
‏13- www.webcast.berkeley.edu
‏14- www.openclassroom.stanford.edu/MainFolder/HomePage.php
‏15- www.see.stanford.edu
‏16- www.ck12.org
‏17- www.udemy.com
‏18- www.skillshare.com
‏19- www.codecademy.com
‏20- www.p2pu.org
‏21- www.ed.ted.com
‏22- www.myopencourses.com
‏23- www.myopencampus.in
‏24- www.nptel.iitm.ac.in
‏25- www.saylor.org
‏26- www.nalandau.com
‏27- www.academicearth.org
‏28- www.youtube.com/education
‏29- www.phodphad.com
‏30- www.learntobe.org
‏31- www.floqq.com
‏32- www.learnerstv.com
‏33- http://www.coursetalk.org
‏34- http://www.skillacademy.com
‏35- http://www.mruniversity.com
‏36- www.alison.com

 

*أضخم وأكبر المكتبات العربية الإلكترونية المجانية لكتب والأبحاث والرسائل العلمية*
*مكتبات متخصصة في كل المجالات متنوعة في كافة العلوم الإنسانية وكل ما تحتاجه من كتب ومجلدات ستجده ضمن هذه المكتبات*

1- مكتبة المصطفى
‏http://goo.gl/vDnSq3
2- مكتبة الإسكندرية
‏http://www.bib-alex.com/
3- جامع الكتب المصورة
‏http://kt-b.com/
4- مليون كتاب الكتروني http://goo.gl/Nvmjs
5- خزانة الكتب http://goo.gl/0SJlkX
6- المكتبة الوقفية http://goo.gl/3eXURW
7- مكتبة الكتاب العربي http://goo.gl/QUy63S
8- مكتبة صيد الفوائد http://goo.gl/AF2Asu
9- مكتبة الوراق http://goo.gl/CIdHm
10 – مكتبة ستار للحاسب الآلي والبرمجيات http://goo.gl/5EBHUN
11- مكتبة نهلة http://goo.gl/cl9oa1
13- المكتبة الإلكترونية المتنوعة http://www.y-ebooks.com/
14- مكتبة المشكاة الإسلامية http://goo.gl/JB9D1
15- هنا مكتبتي http://goo.gl/7Ws34
16- مكتبة لقيت روحي http://goo.gl/Yxy3Je
17- مكتبة صحبة نت http://goo.gl/2C2hXj
19- كتابي دوت كوم http://www.ktaby.com/
20- مكتبة الشرق الأوسط http://goo.gl/bz82b
21- – المكتبة العربية http://abooks.tipsclub.com/
22- مكتبة الكتاب العربي
‏http://www.arabworldbooks.com/E-Books/e_books.html
23- مكتبة بتر لايف http://www.betterlifestore.org/
24- مكتبة نبع الوفاء http://www.s0s0.com/
25- مكتبة جسد الثقافة http://aljsad.com/forums.php
26- المكتبة الالكترونية المجانية http://www.fiseb.com/
——————————–

 

 

 

 

 

 

محركات مواقع البحث عن الكتب والرسائل الجامعية:
أولا: محركات البحث عن الكتب الأجنبية
‏(1)http://ebookee.org/
‏(2)http://www.free-ebooks.net/
‏(3)http://www.ebookbusiness.org/
‏(4)http://bookboon.com/
‏(5)http://www.freebookspot.es/
‏(6)http://vnuki.org/library/
‏(7)http://libgen.info/index.php
‏(8)http://www.scribd.com/
‏Username: businessdatabases
‏Password: [email protected]

 

 

محركات البحث عن الرسائل العلمية
رسائل الماجستير والدكتوراه داخل مصر
(1) قاعدة بيانات الرسائل العلمية بالجامعات المصرية
‏http://www.eulc.edu.eg/
رسائل الماجستير والدكتوراة خارج مصر
‏(1)ProQuest Dissertations & Theses: Full Text
‏http://proquest.umi.com/pqdweb
‏Username: UITMUSER01
‏Password: welcome
‏(2)http://pqdtopen.proquest.com/
‏With PQDT Open, you can read the full text of open access dissertations and theses free of charge.
‏(3)NDLTD UNION CATALOG
أكبر محرك بحث مجانى للرسائل العلمية على الانترنت
‏http://www.ndltd.org/serviceproviders/scirus-etd-search
(4)محرك بحث عالمى لرسائل الماجستير والدكتوراة
‏The Ohio Library and Information Network
‏http://search.ohiolink.edu/etd/index.cgi
(5)محرك بحث عالمى لرسائل الماجستير والدكتوراة
‏Cybertesis
‏http://www.cybertesis.edu.pe/sdx/sisbib/

 

تجربة فحص مقاومة انضغاط السمنت حسب المواصفة القياسية العراقية رقم 5 لسنة 2019 والاوربية  EN 196

https://www.youtube.com/watch?v=sQHRODrX5Uc&feature=youtu.be

https://www.youtube.com/watch?v=OXzyAcXXfMs&feature=youtu.be

 

فحص امتصاص الطابوق

https://www.youtube.com/watch?v=kFu4wk2D8ew

فحص مقاومة انضغاط الطابوق

https://www.youtube.com/watch?v=kFu4wk2D8ew

فحص تزهر الطابوق

https://www.youtube.com/watch?v=6Fc5Q52P6QM